CXP-12 Interface Card 4C

Feature reference manual for

Acq_TripleCXP12Area

Functional description and
GenTL parameters.

Document Number: AW001639

Document Version: 01 Language: 000 (English)
Release Date: 06 september 2021

Applet Version 1.0.3.0

BASLER’

the power of

Contacting Basler Support Worldwide

Europe, Middle East, Africa

Basler AG

An der Strusbek 60—62
22926 Ahrensburg
Germany

Tel. +49 4102 463 515
Fax +49 4102 463 599

support.europe@baslerweb.com
The Americas

Basler, Inc.

855 Springdale Drive, Suite 203
Exton, PA 19341

USA

Tel. +1 610 280 0171
Fax +1 610 280 7608

support.usa@baslerweb.com
Asia-Pacific

Basler Asia Pte. Ltd.

35 Marsiling Industrial Estate Road 3
#05-06

Singapore 739257

Tel. +65 6367 1355
Fax +65 6367 1255

support.asia@baslerweb.com

www.baslerweb.com

Supplemental Information

Interface Card Documentation:

https://docs.baslerweb.com/pc-cards

Frame Grabber Documentation:

https://docs.baslerweb.com/frame-grabbers

CXP GenTL Producer Feature Documentation:
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-
documentation/

All material in this publication is subject to change without notice and is copyright
Basler AG.

http://www.baslerweb.com
https://docs.baslerweb.com/pc-cards
https://docs.baslerweb.com/frame-grabbers
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/

Table of Contents

LR Lo o [T (o o TSP 1
1.1. Features of Applet ACq_THPIECXPI2AIEAccvuiiiii et 1
1.1.1. Parameterization OFAEroouuiiiiiiiii e e e 2

2 = - T 1o 1 o L o TSP 2
LG T S =T 0114 =T o g 1= o) P 3
1.3.1. Software ReqQUIFEMENTSiiiiiiii e e e eaes 3
1.3.2. Hardware ReqQUITEMENTScouiiiiiiiii e e e e e e e e aeen 3
I 0 TR N T =Y 1 PP 4

1.4, Camera INTEITACE oo e ettt e e et e e e e et eeeeatn e aees 4
1.5. Image Transfer 10 PC MEMOIYcouuiiiii e e e e e eaaas 4
B O Y- D (= PPN 5
D2 T o G- o] - | PRI 5
2.2. CXPTriggerPacketMOdEccooiiiiiii e 6
2.3. SystemmonitorUsedCXPCONNECLONScoiuiiiiii i e e e e eees 7
2.4, PacketTagErrorCOUNToouuiiii e e e e e e e e e et e e et e e e e e eaaeaes 7
DS T 0o 4 =Y (=Yo | =1y o T4 O 0T o | P 8
P T W g oo 4 {=To3 (=Y o | =1y o] {0010 o | AP 8
2.7. SystemmonitorPacketbufferOverflowCount ..o, 9
2.8. SystemmonitorPacketbufferOverflowSOourceoooiiiiiii i 9
2.9. SystemmonitorCxplmageLine€MOdEcooiuiiiiiii e 10
2.10. TriggerEVENTCOUNT . .oeeiee e e e e et e e e e e e e e e et e e e e eaaeaas 10
2.11. TriggerAcknowledgementCoOUNTiiiiiiiii e e e 10
2.12. TriggerWaveViolationcooouiiiiiii e aa 11
G T I 4 o o 1= PP 12
3.1. Features and Functional Blocks of Area TrHQQEerccvuuiiiiiiiii e 12
3.2. Digital Input/OUtpUt MaPPINGoeeeiiii e e e e e e a e 15
G TR T I 4T o = ot =Y o T- 1 o 1= 16
3.3.1. Internal Frequency Generator / interface card Controlledccooeeiiiiiiiiiieciines 16
3.3.2. External Trigger Signals / 1O THGgeredcouiiiiiiiiii e 17
3.3.3. Control of Two Flash Lightsccoiiiiii e 20
TR I S T iA1= | (Y 4T [1= PSP 23
3.3.5. Software Trigger with Trigger QUEUEoouiiiiiiiiiiei e 25
3.3.6. External Trigger with Trigger QUEUEcouiiiiiiiiiii e 27
3.3.7. Bypass External Trigger Signalsoiiiiiiiiiiiii e 28
3.3.8. Multi Camera Applications / Synchronized Camerasccoeevviieiiiiieiiieeieeeee e, 28
3.3.9. Hardware System Analysis and Error Detection / Trigger Debuggingcccoeevvvnenn. 28

K = 1= .1 1= =Y TSP 29
3.4.1. AreaTriggerMOUTEcoouiiiii et e e e e e 29
I I 4T [0 =Y £ = (= PR 30
3.4.3. TriggerOULPULFTEQUENCYciieiiiii et et e e e e e e e e e 31
I S I T [1=] o U PPN 32
R By B 4 =Y o - | PP 32

3.4.4.1.1. TriggeriNDEDOUNCEccouiiiiiiiii e 32

3.4.4.1.2. FrONIGP ... 33

3.4.4.1.3. TrigQerINSOUICEcivuiiiii et e e e e ees 34

3.4.4.1.4. TriggeriNPOIarityc..oiiiiiiii e 34

3.4.4.1.5. TriggerInDOWNSCAIEoiiiniiiii i 34

3.4.4.1.6. TriggerInDownscalePhasec.coeiiiiiiiiiiiie e, 35

R S To AV Z= 1 =Y I o o = S PP 36

3.4.4.2.1. SendSoftwar€Triggerciiiiui i 36

3.4.4.2.2. SoftwareTriggerISBUSYcccoiiiiii i, 36

3.4.4.2.3. SoftwareTriggerQueueFillLevelcccooiiiiiiiiiiiii e 36

3.4.4.3. INSHALISHICS .ovvniiiiii e e 37

3.4.4.3.1. TriggerInStatiSticCSSOUICeooiviiiii i 37

3.4.4.3.2. TriggerInStatisticSPolarityccooiiiiiiiiii e 38

3.4.4.3.3. TriggerInStatisticsPulseCountccooiiiiiiiiii e, 38

CXP-12 Interface Card 4C Acq_TripleCXP12Area iii

Table of Contents

3.4.4.3.4. TriggerinStatisticsPulseCountClearooooeiiiiiiiiiiiiiie e, 38

3.4.4.3.5. TriggerInStatisticSFrequeNnCy ..o, 39

3.4.4.3.6. TriggerIinStatisticsSMIiNiMumMFrequencyccocooveiiiiiiiiiiii e, 39

3.4.4.3.7. TriggerIinStatisticsMaximumFrequencyccccooeiiiiiiiiiiiiiiieci e, 40

3.4.4.3.8. TriggerInStatisticsMinMaxFrequencyClearccccoooiiiiiiiiiiiineecennnnn. 40

B TS 1= 1Y oo =Y N 40

3.4.5.1. TriggerMUltiplyPUISEScoouiiiiiii e 41

3u4.6. QUUEBUE ...ttt 41

3.4.6.1. TriggerQUEUEMOTEuiiiiiiiii e 41

3.4.6.2. TriggerQUEUEFIIILEVEL i 42

3.4.7. Pulse FOrm Generator Oo.uuiiiiiiiiiiiiiii et et 42

3.4.7.1. TriggerPulseFormGeneratorODownscale et al.cccooiiiiiiiiiiiii 43

3.4.7.2. TriggerPulseFormGeneratorODownscalePhase et al.c.ocooviiiiiiiiiinnnn. 44

3.4.7.3. TriggerPulseFormGeneratorODelay et al. ... 45

3.4.7.4. TriggerPulseFormGeneratorOWidth et al.coooiiiiii e, 45

3.4.8. Pulse FOrm Generator 1cooooiuiiiiiiii et 46

3.4.9. Pulse FOrm GeNErator 2ooouuiiiiiiii e 46

3.4.10. Pulse FOrm Generator 3 ... 46

3.4.11. Camera Out Signal Mappingcouuuiiiiii e 46

3.4.11.1. TriggerCameraOutSElectccoouuiiiiiiiii e 46

3.4.12. Digital OUIPUL ...ttt 48

3.4.12.1. TriggerOutSelectFrontGPOO €t al.ccoevuiiiiiiiii e 48

3.4.12.2. OULSEAtISHICS ..eeveiieieiii e 50

3.4.12.2.1. TriggerExceededPeriodLimitsccouuiiiiiiiiiiiiii e 50

3.4.12.2.2. TriggerExceededPeriodLimitsClearcccoooiiiiiiiiiiiiii e 50

3.4.12.2.3. TriggerOutStatiStiCSSOUICeoviiiiiiiiiiiiii e 50

3.4.12.2.4. TriggerOutStatisticsPulseCountoooiiiiiiiiiii e 51

3.4.12.2.5. TriggerOutStatisticsPulseCountClearcoooiiiiiiiiiiiiiiie 51

3.4.12.2.6. MissingCameraFrameRESPONSEveveiiuiiiiiiiiiiiiiiii e 52

3.4.12.2.7. MissingCameraFrameResponseClearccviiiiiiiiiiiiiiiiiieccciieees 53

4. BURFEISTAtUS ..o et et e e aea 54
A FIlILEVEI ..ottt eaaas 54

4.2, OVEITIOW <.ttt ettt e e et e e e et e ene 54

LT @ 111 11 G o 0 = 56
TR IR o 11 = TP TOPPRTRPPPN 56

5.2, BIAIIGNMENT <. et et ettt e eaaaas 59

LR T 1= | 1T o] 1 o 60

5.4. CustomBItShIftRIGNT ... oo e 60

6. REVISION HISTOIY ...t e e ettt ettt e et e e e aaa e e enaas 62
(€[0T - | PP 63
Lo = PO OPUPTPRPt 66

CXP-12 Interface Card 4C Acq_TripleCXP12Area iv

Chapter 1. Introduction

This document provides you with detailed information on applet "Acq_TripleCXP12Area" for CXP-12 Interface
Card 4C .

CHF-1z
In the following, you will find a full description of the applet's functionality and features.

For information on the hardware or for a general introduction on how to configure the CXP-12 Interface Card
using the pylon API, the pylon Viewer, or the gpioTool check the document which can be found in https://
docs.baslerweb.com/pc-cards.

All applet-specific parameters described in this document are as represented in the GenTL interface.

For a general explanation of the GenTL interface, check the Basler GenTL
interface documentation (https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-
gentl-producer-feature-documentation/).

For information on camera features, check the respective camera documentation.

For information on Basler pylon features and for APl documentation, check the pylon documentation.

1.1. Features of Applet Acq_TripleCXP12Area

"Acq_TripleCXP12Area" is a tripple-camera applet. Up to three individual cameras can be used. The features
of this applet are fully available for each of the three camera ports. You can configure the CoaXPress
camera interface for CoaXPress cameras version 1.1.1 and 2.0, transferring grayscale (monochrome), Bayer
pattern, or color pixels. Allowed pixel formats are Gray (Mono8, Mono10, Mono12, Mono14, Mono16),
Bayer (BayerGR8, BayerGR10, BayerGR12, BayerGR14, BayerRG8, BayerRG10, BayerRG12, BayerRG14,
BayerGB8, BayerGB10, BayerGB12, BayerGB14, BayerBG8, BayerBG10, BayerBG12, BayerBG14), Color
(RGB8, RGB10, RGB12, RGB14, RGB16), and YCbCr422_8. The maximum link speed is CXP-12. A multi-
functional area trigger is included in the applet. This allows you to control the camera or external devices
using interface card generated, external, or software generated trigger pulses. Area scan cameras transferring
images with a resolution of up to 32768 by 65536 pixels are supported. The applet is processing data at a bit
depth of 16 bits. Acquired images are buffered in interface card memory. You can select a region of interest
(ROI) for further processing. The stepsize of the ROI width is 8 pixel. The ROI stepsize for the image height is
1 line. The high quality Bayer pattern de-mosaicing is based on a 5x5 kernel size.

Processed image data are output by the applet via high speed DMA channels. You can select the pixel format
of the output. The pixel format can either be 8 bit, 10 bit packed, 12 bit packed, 14 bit packed, or 16 bits per
pixel (or per pixel component if you work with a color format).

CXP-12 Interface Card 4C Acq_TripleCXP12Area 1

https://docs.baslerweb.com/pc-cards
https://docs.baslerweb.com/pc-cards
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/
https://www.baslerweb.com/en/sales-support/downloads/document-downloads/cxp-gentl-producer-feature-documentation/

Introduction

Table 1.1. Feature Summary of Acq_TripleCXP12Area

Feature Applet Property
Applet Name

CHF-1z

Acq_TripleCXP12Area

Type of Applet AcquisitionApplets

Board CXP-12 Interface Card 4C

No. of Cameras 3, asynchronous or synchronous

Camera Type CoaXPress, link aggregation max. 1,1,2, maximum
speed CXP-12, Version 1.1.1 and 2.0

Sensor Type Area Scan

Camera Format Grayscale, Bayer Pattern or RGB

Pixel Format Gray (Mono8, Mono10, Mono12, Mono14, Mono16),

Bayer (BayerGR8, BayerGR10, BayerGR12,
BayerGR14, BayerRG8, BayerRG10, BayerRG12,
BayerRG14, BayerGB8, BayerGB10, BayerGB12,
BayerGB14, BayerBG8, BayerBG10, BayerBG12,
BayerBG14), Color (RGB8, RGB10, RGB12, RGB14,
RGB16), and YCbCr422_8.

Processing Bit Depth 16 Bit per color component

Maximum Images Dimensions 32768 * 65536

ROI Stepsize x:8,y:1

Mirroring none

Noise Filter No

Shading Correction No

Dead Pixel Interpolation No

Bayer Filter Yes, High Quality Extended (HQe)

Color White Balancing No

Lookup Table No

DMA Full Speed

DMA Image Output Format All grayscale and color formats. See description
above.

Event Generation no

Overflow Control yes

1.1.1. Parameterization Order

We recommend to configure the functional blocks which are responsible for sensor setup/correction first. This
will be the camera settings, shading correction, and dead pixel interpolation (if available). Afterwards, you can
configure other image enhancement functional blocks such as white balancing, noise filter, and lookup table.
By default, all presets are configured for receiving images directly.

1.2. Bandwidth

CXP-12 Interface Card 4C Acq_TripleCXP12Area 2

Introduction

The maximum bandwidths of applet Acq_TripleCXP12Area are listed in the following table.

Table 1.2. Bandwidth of Acq_TripleCXP12Area

Description Bandwidth

Max. CXP Speed CXP-12

Peak Bandwidth per Camera 1200 MPixel/s for the first two cameras and for the third
camera 2400 MPixel/s

Mean Bandwidth per Camera 1200 MPixel/s for the first two cameras and for the third
camera 2400 MPixel/s

DMA Bandwidth 7200 MByte/s (depends on PC mainboard)

The peak bandwidth defines the maximum allowed bandwidth for each camera at the camera interface. If the
camera's peak bandwidth is higher than the mean bandwidth, the interface card on-board buffer will fill up as
the data can be buffered, but not be processed at that speed.

The mean bandwidth per camera describes the maximally allowed mean bandwidth for each camera at the
camera interface. It is the product of the framerate and the image pixels. For example, with 1-megapixel images
at a framerate of 100 frames per second, the mean bandwidth will be 100 MPixel/s. In case of 8bit per pixel
as output format, this would be equal to 100 MB per second.

The required output bandwidth of an applet can differ from the input bandwidth. A region of interest (ROI) and
the output format can change the required output bandwidth and the maximum mean bandwidth. Moreover,
this applet is a Bayer applet. The required output bandwidth will be three times higher than the input bandwidth.
(This applies only when debayering is switched to ON.) Mind that the DMA bandwidth is the total bandwidth. The
sum of all camera channel bandwidths has to be less than the maximum DMA bandwidth to avoid overflows.

Regard the relation between MPixel/s and MByte/s: The MByte/s depend on the applet and its parameterization
concerning the pixel format. It is possible to acquire more than 8 bit per pixel or to convert from one bit depth
to another. 1 MByte is 1,000,000 Byte.

g Bandwidth Varies

The exact maximum DMA bandwidth depends on the used PC system and its chipset. The
camera bandwidth depends on the image size and the selected frame rate. The given values
of 7200 MByte/s for the possible DMA bandwidth might be lower due to the chipset and its
configuration. Additionally, some PCle slots do not support the required number of lanes to transfer
the requested or expected bandwidth. In these cases, have a look at the mainboard specification. A
behaviour like multiplexing between several PCle slots can be seen in rare cases. Some mainboard
manufacturers provide a BIOS feature where you can select the PCle payload size: Always try to
set this to its maximum value or simply to automatic. This can help in specific cases.

1.3. Requirements

In the following, the requirements on software, hardware and interface card license are listed.

1.3.1. Software Requirements
To run this applet, a supporting runtime environment is required. This can be either Basler pylon, or a Silicon
Software runtime installation providing the GenTL interface.

1.3.2. Hardware Requirements
To run applet "Acq_TripleCXP12Area", a Basler CXP-12 Interface Card 4C is required.

For PC system requirements, check the interface card hardware documentation. The applet itself does not
require any additional PC system requirements.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 3

Introduction

1.3.3. License

This applet is of type AcquisitionApplets. For applets of this type, no license is required. All compatible interface
cards can run the applet using the runtime software.

1.4. Camera Interface

Applet "Acq_TripleCXP12Area" supports 3 CXP cameras. The interface card has 4 connectors. Connect one
CoaXPress cable of each camera to one port of the interface card. The mapping of the ports between the
camera and the interface card is not important. You can chose any order. The hardware setup dialog inside the
GenlCamExplorer will show the chosen setup. GenlCamExplorer is part of the runtime environment.

Figure 1.1. Camera Interface and Camera Cable Setup

Cable BNC

Port 1
Port 2

CoaXPress
2-lanes (BNC)

FT

CoaXPress
1-lane (BNC)

Port 3
Port4

CoaXPress
1-lane (BNC)

l
—
l

Cable BNC

1.5. Image Transfer to PC Memory

The image transfer between interface card and PC is performed via DMA transfers. In this applet, 3 DMA
channels exist for transferring image data. One channel for each camera. The DMA channels have the same
indices as the cameras, starting with 0. The applet output format can be set via the parameters of the output
format module. See Chapter 5, 'Output Format'. All outputs are little-endian coded.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 4

Chapter 2. CoaXPress

This applet can be used with up to 3 area scan cameras. To receive correct image data from your camera,
it is crucial that the camera output format matches the selected interface card input format. The following
parameters configure the interface card's camera interface to match with the individual camera pixel format.
Most cameras support different operation modes. Please, consult the manual of your camera to obtain the
necessary information, how to configure the camera to the desired pixel format.

Ensure that the images transferred by the camera do not exceed the maximum allowed image dimensions for
this applet (32768 x 65536).

With the parameters the way trigger packets are sent from the interface card to the camera on the CXP link
can be defined.

2.1. PixelFormat

This parameter specifies the data format of the connected camera.

The formats defined in the following list can be selected. Choose the pixel format which best matches with
your camera.

In this applet, the processing data bit depth is 16 bit. The camera interface automatically performs a conversion
to the 16 bit format using bit shifting independently from the selected camera format. If the camera bit depth is
greater than the processing bit depth, bits will be right shifted to meet the internal bit depth. If the camera bit
depth is less than the processing bit depth, bits will be left shifted to meet the internal bit depth. In this case,
the lower bits are fixed to zero.

This applet performs a Bayer de-mosaicing. The Bayer pattern is derived from the pixel format.

@ GenTL Controls the Pixel Format

The GenTL interface has a built in automatic adaptation of the pixel format to the camera settings.
Changing the applet pixel format might be overwritten by the GenTL on acquisition start. You
can only set the pixel format if the automatic setting is disabled. See the GenTL documentation
parameter AutomaticFormatControl for more details.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 5

CoaXPress

Table 2.1. Parameter properties of PixelFormat

Property
Name
Display Name
Interface
Access policy
Visibility

Allowed values

Default value

Value
PixelFormat
Pixel Format

IEnumeration

Read/Write
Beginner

BayerGR8
BayerGR10p
BayerGR12p
BayerGR14p
BayerRG8
BayerRG10p
BayerRG12p
BayerRG14p
BayerGB8
BayerGB10p
BayerGB12p
BayerGB14p
BayerBG8
BayerBG10p
BayerBG12p
BayerBG14p
Mono8
Monol0
Monol2
Monol4
Monol6
RGB8
RGB10Op
RGB12p
RGB14p
RGB16
YChCr422_8

Mono8

Example 2.1. Usage of PixelFormat

BayerGR 8bit
BayerGR 10bit
BayerGR 12bit
BayerGR 14bit
BayerRG 8bit
BayerRG 10bit
BayerRG 12bit
BayerRG 14bit
BayerGB 8bit
BayerGB 10bit
BayerGB 12bit
BayerGB 14bit
BayerBG 8bit
BayerBG 10bit
BayerBG 12bit
BayerBG 14bit
Mono 8bit
Mono 10bit
Mono 12bit
Mono 14bit
Mono 16bit
RGB 8bit

RGB 10bit
RGB 12bit
RGB 14bit
RGB 16bit
YUV422 8bit

/* Set */ PixelFormat = Mono8;
/* Get */ value = PixelFormat;

2.2. CxpTriggerPacketMode

Defines the trigger packet mode. For CXP, a packet for the trigger start i.e. rising edge and the trigger end i.e.
falling edge is sent on the CXP links. The CXP standard defines a maximum trigger frequency based on the
available uplink datarate. Since this can be limited to a certain value the maximum can be reduced. In order to
overcome this limitation you can try to set this parameter to CXPTriggerRising so that only half the number

of packets need to be transferred.

CXP-12 Interface Card 4C

Acq_TripleCXP12Area

CoaXPress

Table 2.2. Parameter properties of CxpTriggerPacketMode

Property Value

Name CxpTriggerPacketMode
Display Name CXP Trigger Packet Mode
Interface IEnumeration

Access policy Read/Write/Change
Visibility Beginner

Allowed values CXPTriggerStandard Standard
CXPTriggerRising Rising Edge Only

Default value CXPTriggerStandard

Example 2.2. Usage of CxpTriggerPacketMode

/* Set */ CxpTriggerPacketMode = CXPTriggerStandard;
/* Get */ value = CxpTriggerPacketMode;

2.3. SystemmonitorUsedCxpConnections

The currently used number of CXP ports used in this process.

Table 2.3. Parameter properties of SystemmonitorUsedCxpConnections

Property Value
Name SystemmonitorUsedCxpConnections
Display Name Used Connections
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 1
Maximum 4
Stepsize 1

Example 2.3. Usage of SystemmonitorUsedCxpConnections

/* Get */ value = SystemmonitorUsedCxpConnections;

2.4. PacketTagErrorCount

The parameter reflects the current status of the camera operator. The parameter signalizes CXP stream packet
loss detection.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 7

CoaXPress

Table 2.4. Parameter properties of PacketTagErrorCount

Property Value
Name PacketTagErrorCount
Display Name CXP Packet Tag Error Count
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0
Maximum 4095
Stepsize 1

Example 2.4. Usage of PacketTagErrorCount

/* Get */ value = PacketTagErrorCount;

2.5. CorrectedErrorCount

The parameter reflects the current status of the camera operator. The parameter signalizes single byte error
correction in CXP stream packets.

Table 2.5. Parameter properties of CorrectedErrorCount

Property Value
Name CorrectedErrorCount
Display Name CXP Corrected Error Count
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0
Maximum 4095
Stepsize 1

Example 2.5. Usage of CorrectedErrorCount

/* Get */ value = CorrectedErrorCount;

2.6. UncorrectedErrorCount

The parameter reflects the current status of the camera operator. The parameter signalizes multiple byte error
detection in CXP stream packets.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 8

CoaXPress

Table 2.6. Parameter properties of UncorrectedErrorCount

Property Value

Name UncorrectedErrorCount
Display Name CXP Uncorrected Error Count
Interface IInteger

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0

Maximum 4095
Stepsize 1

Example 2.6. Usage of UncorrectedErrorCount

/* Get */ value = UncorrectedErrorCount;

2.7. SystemmonitorPacketbufferOverflowCount

Represents the number of overflows, if an overflow occurred due to not correctly aligned package order.

Table 2.7. Parameter properties of SystemmonitorPacketbufferOverflowCount

Property Value

Name SystemmonitorPacketbufferOverflowCount
Display Name Packet Buffer Overflow Count

Interface IInteger

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0

Maximum 4095
Stepsize 1

Example 2.7. Usage of SystemmonitorPacketbufferOverflowCount

/* Get */ value_ = SystemmonitorPacketbufferOverflowCount;

2.8. SystemmonitorPacketbufferOverflowSource

This parameter represents the port, which has overflows due to not correctly aligned package order.

Table 2.8. Parameter properties of SystemmonitorPacketbufferOverflowSource

Property Value

Name SystemmonitorPacketbufferOverflowSource
Display Name Packet Buffer Overflow Source

Interface IInteger

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0

Maximum 15
Stepsize 1

CXP-12 Interface Card 4C Acq_TripleCXP12Area

CoaXPress

Example 2.8. Usage of SystemmonitorPacketbufferOverflowSource

/* Get */ value_ = SystemmonitorPacketbufferOverflowSource;

2.9. SystemmonitorCxplmageLineMode

This parameter informs on the current transfer mode, used by the camera. The transfer can be an areascan
(= 0) or linescan (= 1) image.

Table 2.9. Parameter properties of SystemmonitorCxplmageLineMode

Property Value
Name SystemmonitorCxpImageLineMode
Display Name Camera Scan Mode
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum O
Maximum 1
Stepsize 1

Example 2.9. Usage of SystemmonitorCxplmageLineMode

/* Get */ value_ = SystemmonitorCxpImagelLineMode;

2.10. TriggerEventCount

The parameter indicates how many trigger edge events have been sent to the camera.

Table 2.10. Parameter properties of TriggerEventCount

Property Value
Name TriggerEventCount
Display Name Trigger Event Count
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0
Maximum 1048575
Stepsize 1

Example 2.10. Usage of TriggerEventCount

/* Get */ value = TriggerEventCount;

2.11. TriggerAcknowledgementCount

The parameter indicates how many trigger acknowledgement packets sent by the camera (in answer to the
trigger edge packets sent before) have been received by the interface card.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 10

CoaXPress

Table 2.11. Parameter properties of TriggerAcknowledgementCount

Property Value

Name TriggerAcknowledgementCount
Display Name Trigger Ackknowledgement Count
Interface IInteger

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0

Maximum 1048575
Stepsize 1

Example 2.11. Usage of TriggerAcknowledgementCount

/* Get */ value = TriggerAcknowledgementCount;

2.12. TriggerWaveViolation

The parameter is set to 1 if the applet detects a distance between two trigger edges which violates the minimal
edge frequency. The parameter holds its value until it has been read. After beeing read, the parameter updates
the value. Frequency control is running permanently and is not influenced by the read status of the parameter.

Table 2.12. Parameter properties of TriggerWaveViolation

Property Value

Name TriggerWaveViolation
Display Name Trigger Wave Violation
Interface IInteger

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0

Maximum 1048575
Stepsize 1

Example 2.12. Usage of TriggerWaveViolation

/* Get */ value_ = TriggerWaveViolation;

CXP-12 Interface Card 4C Acq_TripleCXP12Area 1

Chapter 3. Trigger

The area trigger system enables the control of the image acquisition process of the interface card and the
connected cameras. In detail it controls the exact exposure time of the camera and controls external devices.
The trigger source can be external devices, internal frequency generators or the user's software application.

The CXP-12 Interface Card 4C interface card has 4 inputs on the front IO connector. Check the hardware
documentation for more information. The CXP-12 Interface Card 4C generates the desired trigger outputs and
control signals from the input events according to the trigger system's parameterization. The trigger system
outputs can be routed to the camera via the CoaXPress link. Additionally, outputs can be routed to the digital
outputs for control of external devices such as flash lights, for synchronizing or for debugging.

Figure 3.1. CXP-12 Interface Card 4C Trigger System

Flash

Software

Camera Trigger

Data and
Trigger

In the following an introduction into the Basler CXP-12 Interface Card 4C trigger system is presented. Several
trigger scenarios will show the possibilities and functionalities and will help to understand the trigger system.
The documentation includes the parameter reference where all parameters of the trigger system are listed and
their functionality is explained in detail.

3.1. Features and Functional Blocks of Area Trigger

The Basler trigger system was designed to fulfill the requirements of various applications. Powerful features
for trigger generation, controlling and monitoring were included in the implementation. This includes:

+ Trigger signal generation for cameras and external devices.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 12

Trigger

External devices such as encoders and light barriers can be used to source the trigger system and control
the trigger signal generation.

In alternative an internal frequency generator can be used to generate trigger pulses.

The trigger signal generation can be fully controlled by software . Single pulses or sequences of pulses can
be generated. The trigger system will automatically control and limit the output frequency.

Input signal monitoring .

Input signal frequency analysis and pulse counting .
Input signal debouncing

Input signal downscaling

Pulse multiplication using a sequencer and controllable maximum output frequency. Make up to 65,000
output pulses out of a single input pulse.

Trigger pulse queue for buffering up to 2000 pulses and control the output using a maximum frequency
valve.

Four pulse form generators for individual controlling of pulse widths, delays and output downscaling.
Up to 10 outputs depending on the interface card type plus the CoaXPress trigger outputs.

A bypass option to keep the pulse forms of the input signals and forward them to outputs and cameras.
Camera frame loss notification .

Full trigger signal reliability and easy error detections.

The trigger system is controlled and configured using parameters. Several read only parameters return status

information on the current trigger state.

The complex trigger system can be easily used and parameterized. The following block diagram figure shows
an overview of the trigger system. As can be seen, the trigger system consists of four different main functional

blocks.

Figure 3.2. Trigger System

Trigger Module Cam A, DMA Index O

Trigger Generalor
Input‘ | Generator, External, Software, R R
Processing Generators
Downscale, Upscale, Queue

Trigger Module Cam B, DMA Index 1

o Trigger Generalor Pulse Form

= s | Generator, External, Software, —» m—

Processing Generators
Downscale, Upscale, Queue

—» Trigger Cam A

Trigger Module Cam C, DMA Index 2

Trigger Cam B
e Trigger Generator
g > ||'|put‘ | Generator, External, Software, Im s e
Front GPIS j— Processing Generators
e Downscale, Upscale, Queue

Trigger Cam C

Trigger Module Cam D, DMA Index 3

Trigger Cam D

o Trigger Generator P .

> P | Generator, External, Software, [=

Processing Generators
Downscale, Upscale, Queue

GPOs
and
Front GPOs

CXP-12 Interface Card 4C

Acq_TripleCXP12Area 13

Trigger

1. Trigger Input:

Trigger inputs can be external signals, as well as software generated inputs and the frequency generator.
An input monitoring and input statistics module allows analysis if the input signals.

External input signals are debounced and split into several paths for monitoring, and further processing.

Figure 3.3. Trigger Input Block Diagram

Input Processing (1, 2 or 4 modules in single, dual or quad applets)

Select 4 Input
" Input }"‘ Poiail > Statistim‘
Frequency
Generator
-
R Trigger
=
Synchronize
Select -
‘ nput }%‘ Polarity

Input —
3 Input

Trigger Generator
Generator, External, Software,
Downscale, Upscale, Queue

GPls and
‘ Front GPls }“ " Debollig

v

pu
(From Cam A}

2. Input Pulse Processing:

The second main block of the trigger system is the Input Pulse Processing. External inputs as well as
software trigger generated pulses can be queued and multiplied in a sequencer if desired. All external
trigger pulses are processed in a maximum frequency valve. Pulses are only processed by this valve if their
frequency is higher than the previously parameterized limit. If a higher frequency is present at the input,
pulses will be rejected or the trigger pulse queue is filled if activated. The maximum frequency valve ensures
that the output-pulses will not exceed the maximum possible frequency which can be processed by the
camera.

Figure 3.4. Trigger Pulse Processing Block Diagram

0

Trigger_é-_ene rator

4:::| Sedact 5| Puise Form
Masimum e T
Selen Freguency !
T » Se quencer Vake !
{Mubip ly Pulses) |
1
1

R EEE—— J— _— J—

3. Output Pulse Form Generators:

After the input pulses have been processed, they are feed into four optional pulse form generators. These
pulse form generators define the signal width, a delay and a possible downscale. The four pulse form
generators can arbitrarily allocated to the outputs which makes the trigger system capable for numerous
applications such as muliple flash light control, varying camera exposure times etc.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 14

Trigger

Figure 3.5. Trigger Pulse Processing Block Diagram

(Output Pulse Form Generator!

. Pulse
»| Downscale 3 > Delay3 [»| Width 3

.y Pulse
»| Downscale 2 > Delay2 [Width 2

Trigger
Generator [

Signals

YYYY

Pulse
Width 1

» Downscale 1 [Delay 1 >

Pulse
Width 0

» Downscale O > Delay0 >

4. Trigger Output:

The last block is related to the trigger outputs. The pulse form generator signals can be output at the digital
outputs and directly to the camera. Moreover, they can be monitored using registers .

Figure 3.6. Trigger Output Block Diagram

»| Selectand | Output
> Palarity Monitoring
3““ > Selectand | | GPOs
e > Polarity Front GPOs
» Selectand | 3 CXP Trigger
> Polarity Signals
»| Selectand | Output
GPls and Palarity Events
Front GPls
Pulse Form 2
Generators r =
Cam B w
Pulse Form
Generators
Cam A

3.2. Digital Input/Output Mapping

The CXP-12 Interface Card 4C supports four digital front inputs. It has two front trigger outputs.

The four front inputs have the indices 0 to 3. In the documentation of the trigger 10 boards and CXP-12 Interface
Card 4C the allocation of these inputs to pins is described.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 15

Trigger

The available outputs can arbitrarily allocated to a trigger module or directly to a GPI.. See Section 3.4.12,
'Digital Output' for explanation.

3.3. Trigger Scenarios

In the following, trigger sample scenarios are presented. These scenarios will help you to use the trigger system
and facilitate easy adaptation to own requirements.

The scenarios show real life configurations. They explain the requirements, illustrate the inputs and outputs
and list the required parameters and their values.

3.3.1. Internal Frequency Generator / interface card Controlled

Let's start the trigger system examples with a simple scenario. In this case we simply want to control the
frequency of the camera's image output and the exposure time with the interface card. Assume that there is no
additional external source for trigger events and we do not need to control any flash lights. Thus the interface

card's trigger system has to control the frequency of the trigger pulses and the exposure time.

Figure 3.7 shows the hardware setup. Only the camera connected to the interface card is required.

Figure 3.7. Generator Controlled Trigger Scenario

CoaXPress

[

To put this scenario into practice, you will need to set your camera into an external trigger mode. Consult the
vendor's user manual for more information.

After the camerais set to an external trigger mode, the exposure period and the exposure time can be controlled
by one of the camera control inputs. Use the CXP cable as trigger source. The names of the camera trigger
modes vary. You will need to use an external trigger mode, where the exposure period is programmable. If you
also want to define the exposure time using the interface card, the respective trigger mode needs to support
this, too.

In the following, a waveform is shown which illustrates the interface card trigger output. Most cameras will start
the acquisition on the rising or falling edge of the signal. The exposure time is defined by the length of the
signal. Note that some cameras use inverted inputs. In this case, the signal has to be 'low active' instead of
being 'high active'. Thus the interface card output has to be inverted which is explained later on.

Figure 3.8. Waveform of Generator Controlled Trigger Scenario

exposure time=
TriggerPulseFormGeneratorOWidth

Colovpt | L | L

exposure period=
1/TriggerFramesPerSecond

After hardware setup and camera configuration we can start parameterizing the interface card's trigger system.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 16

Trigger

In the following, all required parameters and their values are listed.
* AreaTriggerMode = Generator

First, we will need to configure the trigger system to use the internal frequency generator.
» TriggerOutputFrequency = 10

Next, the output frequency is defined. In this example, we use a frequency of 10Hz.

» TriggerPulseFormGeneratorOWidth = 200

So far, we have set the trigger system to generate trigger pulses at a rate of 10Hz. However, we have not
set the pulse form of these pulses i.e. the signal length or signal width. The interface card's trigger system
includes four pulse form generators which allow to set the signal width, a delay and a downscaling. In our
example, we only have one output and therefore, we will need only one pulse form generator, respectively
pulse form generator 0. Moreover, only the signal length has to be defined, a delay and a downscaling is
not required.

Suppose, that we require an exposure time of 200us. Thus, we will set the parameter to value 200 since
the unit is ys.

» TriggerCameraOutSelect = PulseGenerator0

The only thing left to do is to allocate the output of pulse form generator 0 to the camera trigger output. If
your camera requires low active signals, choose NotPulseGenerator0 instead.

Now, the trigger is fully configured. However the trigger signal generation is not started yet. Set parameter
TriggerState to Active to start the system. Of course, you will also need to start your image acquisition. It is
up to you if you like to start the trigger generation prior or after the acquisition has been started. If the trigger
system is started first, the camera will already send images to the interface card. These images are discarded
as no acquisition is started.

You will now receive images from your camera. Change the frequency and the signal width to see the influence
of these parameters. A higher frequency will give you a higher frame rater. A shorter exposure time will make
the images 'darker'. You will realize, that it is not possible to set an exposure time which is longer than the
exposure period. In this case, writing to the parameter will result in an error. Therefore, the order of changing
parameter values might be of importance. Also be careful to not select a frequency or exposure time which
exceeds the camera's specifications. In this cases you will loose trigger pulses, as the camera cannot progress
them. Get the maximum ranges from the camera's specification sheets.

To stop the trigger pulse generation, set parameter TriggerState to SyncStop. The trigger system will then
finalize the current pulse and stop any further output until the system is activated again. The asynchronous
stop mode is not required in this scenario.

3.3.2. External Trigger Signals / 10 Triggered

In the previous example we used an internal frequency generator to control the camera's exposure. In this
scenario, an external source will define the exact moment of exposure. This can be, for example, a light barrier
as illustrated in the following figure. Objects move in front of the camera, a light barrier will define the moment,
when an object is located directly under the camera. In practice, it might not be possible to locate the light
barrier and the camera at the exact position. Therefore, a delay is required which delays the pulses from the
light barrier before using them to trigger the camera. Moreover, in our scenario, we assume that a flash light
has to be controlled by the trigger system, too.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 17

Trigger

Figure 3.9. External Controlled Trigger Scenario

Flash

An exemplary waveform (Figure 3.10) provides information on the input signal and shows the desired output
signals. The input is shown on top. As you can see, the falling edge of the signal defines the moment which
is used for trigger generation. Thus, the signal is 'low active'. Mind that the pulse length of any external input
is ignored (second row), only falling edges are considered.

The output to the camera is shown in the third row. Here we can see an inserted delay. This delay will
compensate the positions of the light barrier and the camera. The signal width at the trigger camera output
defines the exposure time, if the camera is configured to the respective trigger mode. Control of the flash light
is done using trigger output 0. Again, a delay is added. Depending on the requirements of the flash light, this
delay has to be shorter or longer than the trigger camera output delay. Similarly, the required pulse length
varies for different hardware.

Figure 3.10. Waveform of External Trigger Scenario

. input frequency < TriggerFramesPerSecond !

input 2 _|—, | |

e.g. light barrier

input pulse I I

width 0
——

‘W_J
delay 0 width 1
f—g‘\

output 0 I | I

e.q. flash light

delay 1

Before parameterizing the applet, ensure that your camera has been set to an external trigger mode. Check
the previous trigger scenario for more explanations.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 18

Trigger

In this example, we have to parameterize the trigger mode, the input source and we have to configure two
trigger outputs.

* AreaTriggerMode = External

In external trigger mode, the trigger system will not use the internal frequency generator. External pulses
control the output of trigger signals. This requires the selection of an input source and the configuration of
the input polarity.

TriggerinSource = TriggerinSourceFrontGPI2

Select the trigger input by use of this parameter. You can choose any of the inputs. If you use a multi-camera
applet, cameras can share same sources.

TriggerinPolarity = LowActive
For the given scenario, we assume that a trigger is required on a falling edge of the input signal.
TriggerOutputFrequency = 500

Do not forget to set this parameter. For any use of the trigger system, the correct parameterization of this
parameter is required. If you do not use the internal frequency generator, this parameter defines the maximum
allowed trigger pulse frequency. In other words, you can set a limit with this parameter. The limiting frequency
could be the maximum exposure frequency of the camera.

The advantage of setting this limit is the information on lost trigger signals. Let's suppose the frequency
of the external trigger signals will get to high for the camera or the applet. In this case, you will loose images
or obtain corrupted images. If you have set a correct frequency limit in the trigger system, the trigger system
will provide you with information of these exceeding line periods. This information can be obtained by register
polling . Thus you always have the possibility to prevent your application of getting into a bad, probably
undefined state and you will always get the information of when and how many pulses got lost. Check the
explanations of parameters TriggerOutputFrequency and TriggerExceededPeriodLimits for more information.

More information on error detection and analysis can be found in scenario Section 3.3.9, 'Hardware System
Analysis and Error Detection / Trigger Debugging'

The trigger system also allows the queuing of trigger pulses if you have a short period of excess pulses. We
will have a look at this in a later scenario.

In our example, we set the maximum frequency to 500 frames per second. If you do not want to use this
feature, set TriggerOutputFrequency to a high value, such as 1MHz.

TriggerPulseFormGeneratorOWidth = 200

So far, we have set the trigger system to accept external signals and generate the trigger pulses out of these
signals. Next, we need to output these pulses. For realization, we need to define the pulse form of the output
signals. Just as shown in the previous scenario, we use pulse form generator 0 for generating the pulse form
of the trigger signals. We set a pulse width of 200us.

TriggerPulseFormGeneratorODelay = 50

In addition to the signal width, a delay will give us the possibility to delay the output as the light barrier might
not be positioned at the exact location. For this fictitious scenario we use a delay of 50us.

TriggerPulseFormGenerator1Width = 250

In addition to the trigger output we want to control a flash light. We use pulse form generator 1 for this purpose
and set the signal width to 250ps.

TriggerPulseFormGenerator1Delay = 25

A delay for the flash output is set, too.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 19

Trigger

» TriggerCameraOutSelect = PulseGenerator0

Finally, we have to allocate the camera trigger output with the pulse form generator 0.
 TriggerOutSelectFrontGPOO = PulseGenerator1

The flash light, connected to output 0 has to be allocated to pulse form generator 1.
» TriggerOutSelectFrontGPO1 = PulseGenerator0

Let's assume that it is necessary to measure the camera trigger output using a logic analyzer. Hence, we
allocate output 1 to pulse form generator 0 as well.

The trigger is now fully configured. Just as described in the previous scenario, you can now start the acquisition
and activate the trigger system using parameter TriggerState.

You will now receive images from the camera for each external trigger pulse. Compare the number
of external pulses with the generated trigger signals and the received images for verification. Use
parameter TriggerinStatisticsPulseCount of category Trigger Input -> Input Statistics and parameter
TriggerOutStatisticsPulseCount of the output statistics parameters to get the number of input pulses and
generated pulses. You can compare these values with the received image numbers.

3.3.3. Control of Two Flash Lights

This scenario is similar to the previous one. We use an external trigger to control the camera and a flash light.
But in difference, we want to get three images from one external trigger pulse. Images one and three out of
the sequence of three images have to use the first light source and image two has to use the second light
source. Thus, in this scenario we will learn on how to use a trigger pulse multiplication and on how to control
two lights connected to the interface card.

The application idea behind this scenario is that an object is acquired using different light sources. This could
resultin a HDR image or switching between normal and infrared illumination. The following figure illustrates the
hardware setup. As you can see, we have two light sources this time. The objects move in front of the camera.
The light barrier will provide the information on when to trigger the camera. Let's suppose that the objects stop
in front of the camera or the movement is slow enough to generate two images with the different illuminations.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 20

Trigger

Figure 3.11. External Controlled Trigger Scenario

Flash

Before looking at the waveform, let's have a look at our fictitious hardware specifications.

Table 3.1. Fictitious Hardware Specifications of Trigger Scenario Three Light Sources

Element Limit
Object Speed Max. 100 Objects per Second
Minimum Camera Exposure Time 50us
Minimum Camera Frame Period 70us

The object speed is 100 objects per second. The minimum camera exposure time is 50us at a minimum camera
frame period of 70us. Thus we only need 210us to acquire the three images. The following waveform shows the
input and output signals, as well as the multiplied input signals. The first row shows the input. Each falling edge
represents the light barrier event as marked in the second row. The third row shows the multiplied input pulses
with a gap of 70us between the pulses. The trigger signal is generated for each of these pulses, however the
trigger flash outputs 0 and 1 are downscaled by two and three and a delay is added.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 21

Trigger

Figure 3.12. Waveform of External Trigger Scenario Controlling Two Flash Lights

max. input frequency = 5 objects per second

input 2 |_’ ‘_’

e.q. light barrier

input pulse | |

multiplied input | | | | | |

min. cam line rate = 70us

—

¢ _J 4 v - " U b

min. exp. time = 50us

Downscale = 2

output 0 ,—‘ I_l Phase =0 [—‘ I_l

e.g. blue light

Downscale = 3

output 1 |_| Phase =1 |_|

e.qg. green light

Parameterization is similar to the previous example. In contrast, this time, we have to set the trigger pulse
sequencer using a multiplication factor and we have to use the pulse form generators.

AreaTriggerMode = External
TriggerinSource = 2
TriggerinPolarity = LowActive
TriggerMultiplyPulses = 3

The parameter specifies the multiplication factor of the sequencer. For each input pulse, we have to generate
three internal pulses. The period time of this multiplication is defined by parameter TriggerOutputFrequency

TriggerOutputFrequency = 14285

This time, the maximum frames per second correspond to the gap between the multiplied trigger pulses. We
need a gap of 70us which results in a frequency of 14285Hz.

TriggerPulseFormGeneratorOWidth = 50

Again, we use pulse form generator O for trigger signal generation. The pulse width is 50us. A delay or
downscaling is not required.

TriggerPulseFormGenerator1Width = 50

The pulse width for the flash lights depends on the hardware used. We assume a width of 50us in this
example.

TriggerPulseFormGenerator2Width = 50
TriggerPulseFormGenerator1Downscale = 2
TriggerPulseFormGenerator2Downscale = 3
TriggerPulseFormGenerator1DownscalePhase = 0

We use the phase shift for delaying the downscaled signals of the outputs. You could use the delay instead,
but any frequency change will require a change of the delay as well. The phase shift of pulse form generator
1 i.e. the first flash light is 0.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 22

Trigger

 TriggerPulseFormGenerator2DownscalePhase = 1
The phase shift of pulse form generator 2 i.e. the second flash light is 1.
» TriggerCameraOutSelect = PulseGenerator0
The output allocation is as usual.
 TriggerOutSelectFrontGPOO = PulseGenerator1
» TriggerOutSelectFrontGPO1 = PulseGenerator2

Start the trigger system using parameter TriggerState as usual. You will notice that you get thrice the number
of images from the interface card than external trigger pulses have been generated by the light barrier. Equally
to the previous example, check for exceeding line periods at the input when you run your application or ensure
that your external hardware will not generate the input pulses with an exceeding frequency.

Keep in mind to start the acquisition before activating the trigger system. This is because you will receive three
images for one external trigger pulse. If you start the acquisition after the trigger system, you cannot ensure
that the first transfered image is the first image out of a sequence.

3.3.4. Software Trigger

The previous examples showed the use of the internal frequency generator and the use of external trigger
pulses to trigger your camera and generate digital output signals. Another trigger mode is the software trigger.
In this mode, you can control the generation of each trigger pulse using your software application. To use
the software triggered mode, set parameter AreaTriggerMode to Software. Next, configure the pulse form
generators and the outputs as usual and start the trigger system (set TriggerState to Active) and the acquisition.
Now, you can generate a trigger pulse by writing value '1' to parameter SendSoftwareTrigger i.e. each time you
write to this parameter, a trigger pulse is generated. The relevant blocks of the trigger system are illustrated
in the following figure.

Keep in mind that the time between two pulses has to be larger than 1 / TriggerOutputFrequency as this will
limit the maximum trigger frequency. The trigger system offers the possibility to check if a new software trigger
pulse can be accepted i.e. the trigger system is not busy anymore. Read parameter SoftwareTriggerisBusy to
check it's state. While the parameter has value Busy, writing to parameter SendSoftware Trigger is not allowed
and will be ignored. You should always check if the system is not busy before writing a pulse. To check if you
lost a pulse, read parameter TriggerExceededPeriodLimits.

In some cases, you might want to generate a sequence of pulses for each software trigger. To do this,
simply set parameter TriggerMultiplyPulses to the desired sequence length. Now, for every software trigger
pulse written to the trigger system, a sequence of the define length with a frequency defined by parameter
TriggerOutputFrequency is generated. Again, the system cannot accept further inputs while a sequence is
being processed.

Let's have a look at some flow chart examples on how to use the trigger system in software triggered mode.
The flow charts visualize the steps of a fictitious user software implementation. In the first example, we simply
generate single software trigger pulses using parameter SendSoftware Trigger. When the applet receives this
pulse, it will trigger the camera. The camera will send an image to the interface card which will be processed
there and will be output to the PC via DMA transfer. In the meantime, the users software application will wait
for any DMA transfers. After the application got the notification that a new image has been fully tranferred to
the PC it will send a new software trigger pulse and the interface card and camera will start again generating
an image. Our software application will now have the time to process the previously received image until it is
waiting for a new transfer. Thus, the software can process images while image generation is in progress. Of
course, you can first process your images and afterwards generate a new trigger pulse, as well. So the steps
for a repeating sequence are: Generate a SW trigger pulse, wait for image, generate a SW trigger pulse, wait
for image. The flowchart of this example can be found in the following figure.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 23

Trigger

Figure 3.13. Flowchart of Software Application Using the Software Trigger

?

applet can now accept software trigger pulses
and will accept data from camera

- trigger system will send a trigger pulse to the camera
- camera will send image data
- image data is processed by applet and sent to PC

PC received full image data
->a new trigger pulse can now be generated

The image generation is now in progress. In the meantime
the user-application can process the previous image

In the sample application shown above, it is ensured that the trigger system is not busy after you received the
image. Therefore, we do not need to check for the software trigger busy flag in this example. One drawback of
the example is that we might not acquire the frames at the maximum speed. This is because we have to wait
for the full transfer of images before generating a new trigger pulse. Cameras can accept new trigger pulses
while they transfer image data. The next example will therefore use the trigger sequencer.

The next example uses two threads. One thread for trigger generation and one thread for image acquisition
and processing. In comparison to the previous example, we use the trigger sequencer for pulse multiplication
and we will have to use the busy flag. This will allow an acquisition at a higher frame rate.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 24

Trigger

Figure 3.14. Flowchart of Software Application Using the Software Trigger with a Sequencer

PClreceived full image data

applet can now accept software trigger pulses
and will accept data from camera

The trigger system will generate 1000 trigger pulses from the input
pulse and send them to the camera at the specified frame rate.

The main thread will configure and start the trigger system and the acquisition. For each software trigger pulse
we send to the interface card, 1000 pulses are generated and send to the camera at the framerate specified by
TriggerOutputFrequency. After sending a software trigger pulse to the interface card we wait until the software
is not busy anymore by polling on register Software TriggerlsBusy. To control the number of generated trigger
pulses we count each successful sequence generation. If more images are required we can send another
software trigger pulse to the interface card to start a new sequence.

The second thread is used for image acquisition and image data processing. Here, the software will wait for
new incoming images (Use function Fg_getLastPicNumberBlockingEx() for example) and process the received
images. The thread can exit if the desired number of images have been acquired and processed.

3.3.5. Software Trigger with Trigger Queue
To understand the following scenario you should have read the previous scenario first. In the following we

will have a look at the software trigger once again. This time, we use the trigger queue. The trigger queue
enables the buffering of trigger pulses from external sources or from the software trigger and will output these

CXP-12 Interface Card 4C Acq_TripleCXP12Area 25

Trigger

pulses at the maximum allowed frequency specified by TriggerOutputFrequency. Therefore, we can write to
SendSoftwareTrigger multiple times even if the trigger system is still busy. Parameter Software TriggerlsBusy
will only have value Busy if the queue is full. Instead of writing multiple times to SendSoftware Trigger you can
directly write the number of required pulses to the parameter.

The trigger queue can buffer 2040 sequence pulses. Thus if you have a certain sequence length of N pulses
and currently 200 pulses in the queue, the trigger system can store additional 1840 remaining pulses. You can
check the fill level by reading parameter TriggerQueueFillLevel.

In the following flow chart you can see a queue fill level minimum limit of 10 pulses. In our supposed application
we will check the queue fill level and compare it with our limit. If less pulses are in the queue, we generate
a new software trigger pulse. Thus, on startup, the queue will fill-up until it contains 10 pulses. We count the
software trigger pulses send to the trigger system. Multiplied with our sequence length, we can obtain the
number of pulses which will be send to the camera. If enough pulses have been generated, we can stop the
trigger pulse generation.

Figure 3.15. Flowchart of Software Application Using the Software Trigger with Trigger Queue

PClreceived full image data

The trigger system will generate 1000 trigger pulses from the input
pulse and send them to the camera at the specified frame rate.

YES - -

R

When having a look at the waveform (Figure 3.16) we can see the initialization phase where the queue is filled.
After fill level value 10 has been reached, no more software trigger pulses are written to the applet. The system
will now continue the output of trigger pulses. As our sequence length is 1000 pulses we have to wait for 1000
pulses to be generated until a change in the fill level will occur. After the 1000th pulse has been completely

NO

CXP-12 Interface Card 4C Acq_TripleCXP12Area 26

Trigger

generated, the fill level will change to 9. This will cause the generation of another software trigger pulse by our
sample application which will cause a fill level of 10 again.

Figure 3.16. Waveform lllustrating Software Trigger with Queue Example"

SendSoftwareTrigger |||||||||||||||||||| _____ ||
KN 000/0/0/0/0.0/0 Eu— B0 G
cci1 | I """ _I_Ii

When using the trigger queue, the stopping of the trigger system is of interest. If you set parameter TriggerState
to SyncStop, the trigger system will stop accepting inputs such as software trigger pulses, but it will complete
the trigger pulse generation until the queue is empty and all pulses are fully output. You can immediately cancel
the pulse generation by setting the TriggerState to AsyncStop.

3.3.6. External Trigger with Trigger Queue

Of course, we can use the trigger queue with external triggers, too. This will give us a possibility to buffer 'jumpy’
external encoders or any other external trigger signal generators. Let's suppose an external encoder which is
configured to generate trigger pulses with a frequency of 50Hz and a camera which can be run at a maximum
frequency of 52Hz. Thus, we set parameter TriggerOutputFrequency to 52Hz. Now assume that the external
hardware is a little 'jJumpy' and the 50Hz is just an average. So if we have inputs with a frequency higher than
52Hz we will loose at least one pulse. You can check this by reading parameter TriggerExceededPeriodLimits.

Now let's have a look at the same scenario if the queue is enabled. If it is enabled, we can buffer trigger pulses.
Thus, we can buffer the exceeding input frequency and output the pulses at the maximum camera trigger
frequency which is 52Hz in our example. After the input frequency is reduced, the queue will get empty and the
pulse output is synchronous to the input again. Note that the delay might result in images with wrong content
such as 'shifted' object positions.

To enable the queue, just write value On to TriggerQueueMode.

The following waveform illustrates the input signal, the queue fill level and the output signal. At the beginning,
the gap between the first two input signals is 20ms i.e. the frequency is less than 52Hz. Thus, the queue will not
fill with pulses and the trigger system will directly output the second pulse. Now, the gap between the second
and the third as well as the fourth pulse is less than 19.2ms and therefore, the trigger system will delay the
output of these pulses to have a minimum gap of 19.2ms. During this period, the queue fill level will increment to
value 1 for short periods. The gap between the fourth and the following input pulses is sufficiently long enough,
however, the system will have to delay these pulses, too.

Figure 3.17. Using External Trigger Signal Sources together with the Trigger Queue

[—_ —_ M L~ L]
= @ & = =] =
3 @ in 3 3 3
7 g B 7 @ i

5 @ o Il Il> Il=
% I = g g g
I £ 4 I I I
M T T M M N

§

g [S I S S Sy
TriggerQueueFillLevel anﬁa G>®,(0 X 0 X 0
o T LT

13

T SWZElk
v SWZEL
T swpz

ZHOG T swOZ

ZHIG ¥ swgEl
ZHOG

ZHZG
IHZS v sWE
ZHZS

Note that TriggerExceededPeriodLimits will only be set if the queue is full i.e. in overflow condition.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 27

Trigger

3.3.7. Bypass External Trigger Signals

When external trigger signals are used, the duty cycle i.e. signal width or signal length will always be ignored.
Only the rising or falling edge depending on the polarity settings is considered. However, you can bypass an
external source directly to an output. For example, you can bypass an external source to the camera which
allows you to control the exposure time with the external source. Mind that you will bypass the trigger core
system and therefore, no frequency checks or downscales can be performed.

Use the output select parameters for camera control or digital outputs to select a bypass source. These are
for example:

» TriggerCameraOutSelect = BYPASS_FRONT_GPI_0
» TriggerOutSelectFrontGPOO = BYPASS_FRONT_GPI_1

3.3.8. Multi Camera Applications / Synchronized Cameras

A basic application is that multiple cameras at one or more interface cards are connected to the same trigger
source. If all cameras have to acquire images for every trigger pulse. Simply connect the trigger source to all
interface cards and set the same trigger configuration for all cameras. This applets supports up to 3 cameras.
Set the same parameters for all cameras. Multiple trigger systems are allowed to share the same trigger input,
so you do not have to connect your trigger source to 3 inputs.

If you do not have an external trigger source, but use the generator or the software trigger you can synchronize
the triggers to ensure camera exposures at the same moment. Simply output the camera control signal on
a digital trigger output and connect this output to a digital input of other interface cards which have to be
synchronized with the master. In the slave applets bypass the input to the camera control outputs. In addition
to that, this applet supports up to 3 cameras and includes a special trigger mode called Synchronized. This
mode can be chosen for all camera ports except the first one. The "slave" cameras use trigger pulses at the
output of the first camera as input source. However, users will still have to configure the pulse form generators
in the trigger system of the slave cameras and will still have to allocate them to the trigger outputs.

@ Arbitrary Output Allocation

In multiple camera applets you can also select another camera trigger module source. For example,
CXP trigger source for camera 1 can use CamAPulseGenerator0.

3.3.9. Hardware System Analysis and Error Detection / Trigger Debugging

The Basler trigger system includes powerful monitoring possibilities. They allow a convenient and efficient
system analysis and will help you to detect errors in your hardware setup and wrong parameterizations.

Let's have a look at the simple external trigger example once again. Assume that you have set up all devices
and have fully configured the applet. You start the system and receive images. Unfortunately, the number of
acquired images or the framerate is not as expected. This means, at some point trigger signals or frames got
lost. To analyze the error, let's have a look at the monitoring applet registers.

» Trigger Input Statistics

The parameters of the trigger input statistics category allow an analysis of the external trigger pulses.
Parameter TriggerinStatisticsFrequency performs a continuous frequency measurement of the input signals.
Compare this value with the expected trigger input frequency. If the measured frequency is much higher or
lower than the expected frequency, check your external hardware. Also check if the correct trigger input has
been chosen by parameter TriggerinSource and if the pulse width of the input is long enough to be detected
by the hardware.

To validate a constant input frequency, the trigger system will also show the maximum
and minimum detected frequencies using parameters TriggerinStatisticsMaximumFrequency and

CXP-12 Interface Card 4C Acq_TripleCXP12Area 28

Trigger

TriggerinStatisticsMinimumFrequency. On startup, you will have a very low frequency as no external
pulses might have been detected so far. Therefore, you have to clear the measurement using parameter
TriggerinStatisticsMinMaxFrequencyClearfirst. If you detect an unwanted deviation from the expected values
or the difference between the minimum and maximum frequency is comparably high, your external trigger
generating hardware might be 'jumpy', skips pulses or is 'bouncing' which causes pulse multiplication. In this
case, you might be able to compensate the problem using a higher debouncing value, set a lower maximum
allowed frequency (see Section 3.3.2, 'External Trigger Signals / 10 Triggered') or use the trigger queue (see
Section 3.3.6, 'External Trigger with Trigger Queue').

Another feature of the input statistics module is the pulse counting. This feature can be used to compare
the number of input pulses with the output pulses and acquired images. Read the pulse count value from
parameter TriggerinStatisticsPulseCount. To ensure a synchronized counting of the input and any output
pulses and images you should clear the pulse counter before generating external trigger inputs.

» Trigger Output Statistics

A pulse counter is connected to the trigger output, too. Here you can select one of the pulse
form generators using parameter TriggerOutStatisticsSource and read the value with parameter
TriggerOutStatisticsPulse Count. Reset the pulse counter using TriggerOutStatisticsPulse CountClear.

Use the pulse count value to compare it with the input pulse counter. If the values vary, pulses
in the interface card have been discarded. This can happen if the input frequency is higher than
the maximum allowed frequency specified by parameter TriggerOutputFrequency. If this happens, flag
TriggerExceededPeriodLimits will be set. Moreover, if the pulse counter values dramatically differ, ensure
that no trigger multiplication and/or downscaling has been set. Check parameters TriggerInDownscale,
TriggerMultiplyPulses and the downscale parameters of the pulse form generators.

» Camera Response Check

Trigger pulses might get lost in the link to the camera or the trigger frequency is to high to be processed
by the camera. In this case, the number of frames received by the interface card differs from the trigger
pulses sent. For this error, the trigger system includes the missing camera frame response detection module.
The module can detect missing frames and set a register. Check Section 3.4.12.2, 'OutStatistics' for more
information and usage.

* Acquired Image Compare

Of course, it is also possible to count the number of acquired images i.e. the number of DMA transfers and
compare them with the generated trigger pulses. If the values differ, you might have lost trigger pulses in
the camera. In this case, check that the trigger frequency is not to high for the camera. Ensure that you do
not run the applet in overflow state, where images can get lost in the applet. If the applet is run in overflow,
check the maximum bandwidths of the applet. A smaller region of interest might solve the problems.

For every monitoring values, check the maximum and minimum ranges of the parameters. If pulse counters
reached their maximum value, they will reset and start from zero.

3.4. Parameters

3.4.1. AreaTriggerMode
The area trigger system of this applet can be run in three different operation modes.
* Generator

An internal frequency generator at a specified frequency will be used as trigger source. All digital trigger
inputs and software trigger pulses will be ignored.

« External

CXP-12 Interface Card 4C Acq_TripleCXP12Area 29

Trigger

In this mode, one of the digital inputs is used as trigger source i.e. you can use an external source for trigger
generation.

« Software

In software triggered mode, you will need to manually generate the trigger input signals. This has to be done
by writing to an applet parameter.

» Synchronized

The synchronized mode is not available for the first camera. If the area trigger mode of a process (Process)
is set to synchronized mode, the trigger source of the process will be the output of the previous process. For
example, if the area trigger mode of process 1 is set to synchronized mode, the trigger system is sourced
by the output of process 0.

In Section 3.3.8, 'Multi Camera Applications / Synchronized Cameras' an example of the usage is presented.
The block diagram in Figure 3.2, 'Trigger System' illustrates the sources of the synchronize outputs and
inputs.

2 Free-Run Mode

If you like to use your camera in free run mode you can use any of the modes described above.
The camera will ignore all trigger pulses or, if required, you can disable the output or deactivate
the trigger using parameter TriggerState.

2 Allowed Frequencies

Mind the influence of parameter TriggerOutputFrequency in external and software triggered mode.
Always set this parameter for these modes.

Table 3.2. Parameter properties of AreaTriggerMode

Property Value

Name AreaTriggerMode

Display Name Area Trigger Mode

Interface IEnumeration

Access policy Read/Write/Change

Visibility Beginner

Allowed values Generator Generator
External External
Software Software

Synchronized Synchronized

Default value Generator

Example 3.1. Usage of AreaTriggerMode

/* Set */ AreaTriggerMode = Generator;
/* Get */ value = AreaTriggerMode;

3.4.2. TriggerState

The area trigger system is operating in three trigger states. In the 'Active' state, the module is fully enabled.
Trigger sources are used, pulses are queued, downscaled, multiplied and the output signals get their
parameterized pulse forms. If the trigger is set into the 'Sync Stop' mode, the module will ignore further input
pulses or stop the generation of pulses. However, the module will still process the pulses in the system. This
means, a filled queue and the sequencer will continue processing the pulses and furthermore, the pulse form

CXP-12 Interface Card 4C Acq_TripleCXP12Area 30

Trigger

generators will output the signals according to the parameterized parameters. Finally, the 'Async Stop' mode
asynchronously and immediately stops the full trigger system for the respective camera process. Note that this
stop might result in output signals of undefined signal length as a current signal generation could be interrupted.
Also note that a restart of a previously stopped trigger i.e. switching to the 'Active' state will clear the queue
and the sequencer.

Table 3.3. Parameter properties of TriggerState

Property Value

Name TriggerState
Display Name Trigger State
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner

Allowed values Active Active

AsyncStop Async Stop
SyncStop Sync Stop

Default value SyncStop

Example 3.2. Usage of TriggerState

/* Set */ TriggerState = SyncStop;
/* Get */ value = TriggerState;

3.4.3. TriggerOutputFrequency
This is a very important parameter of the trigger system. It is used for multiple functionalities.

If you run the trigger system in 'Generator' mode, this parameter will define the frequency of the generator. If
you run the trigger system in 'External’ or 'Software Trigger' operation mode, this parameter will specify the
maximum allowed input frequency. Input frequencies which exceed this limit will cause the loss of the input
pulse. To notify the user of this error, a read register contains an error flag . However, if the trigger queue
is enabled, the exceeding pulses will be buffered and output at the maximum frequency which is defined by
TriggerOutputFrequency. Thus, the parameter also defines the maximum queue output frequency. Moreover,
it defines the maximum sequencer frequency. The maximum valid value of TriggerOutputFrequency is limited
by CamerasimulatorFramerate in camera simulator mode.

Note that the range of this parameter depends on the settings in the pulse form generators. If you want to
increase the frequency you might need to decrease the width or delay of one of the pulse form generators.

Equation 3.1. Dependency of Frequency and Pulse Form Generators

Max{WIDTHO,DELAYO0}

DOWNSCALE0 '
Maz{WIDTHI1,DELAY1}

DOWNSCALE1 '
fps Maz{WIDTH2, DELAY2}

DOWNSCALE2 ’
Max{WIDTH3,DELAY3}

DOWNSCALE3

» fps = TriggerOutputFrequency

WIDTHIO0..3] = TriggerPulseFormGenerator[0..3]Width

DELAY]IO0..3] = TriggerPulseFormGenerator[0..3]Delay

DOWNSCALE[0..3] = TriggerPulseFormGenerator[0..3]Downscale

CXP-12 Interface Card 4C Acq_TripleCXP12Area 31

Trigger

Read the general trigger system explanations and the respective parameter explanations for more information.

Table 3.4. Parameter properties of TriggerOutputFrequency

Property Value

Name TriggerOutputFrequency
Display Name Trigger Output Frequency
Interface IFloat

Access policy Read/Write/Change

Visibility Beginner

Allowed values Minimum 0.01455191523
Maximum 3.1249999999999996E7
Stepsize 2.220446049250313E-16

Default value 8.0

Unit of measure Hz

Example 3.3. Usage of TriggerOutputFrequency

/* Set */ TriggerOutputFrequency = 8.0;
/* Get */ value = TriggerOutputFrequency;

3.4.4. Trigger Input

The parameters of category Trigger Input are used to configure the input source of the trigger system. The
category is divided into sub categories. All external sources are configured in category external. Category
software trigger allows the configuration, monitoring and controlling of software trigger pulses. In category
statistics the parameters for input statistics are present.

3.4.4.1. External

3.4.4.1.1. TriggerinDebounce

In general, a perfect and steady trigger input signal can not be guaranteed in practice. A transfer using long
cable connections and the operation in bad shielded environments might have a distinct influence on the
signal quality. Typical problems are strong flattening of the digital's signal edges, occurring interferences during
toggling and inducing of short jamming pulses (spikes). In the following figure, some of the influences are
illustrated.

Figure 3.18. Faulty Signal and it's Reconstruction

Slow Edges Spikes
" I ——_——_—=="_--_._._ A ., iy -
é—::: A T é____‘-:-:_.:::::\ I ‘:::{ = A

Triggerinput .~ JXKNK IR N [

= =

Moise —

Reconstructed
Trigger Input | | |

- - -

L L

L : stability criterion of hysteresis

CXP-12 Interface Card 4C Acq_TripleCXP12Area 32

Trigger

The trigger system has been designed to work highly reliable even under problematic signal conditions. An
internal debouncing of the inputs will eliminate unwanted trigger pulses. It is comparable to a hysteresis. Only
signal changes which are constant for a specified time (marked 'L' in the figure) are accepted which makes
the input insensitive to jamming pulses. Also multiple triggering will be effectively disabled, which occurs by
slow signal transfers and bouncing. Set the debounce time according to your requirements in ps. Note that the
debounce time will also be the delay time before the trigger signal can be processed. The settings made for
this parameter affect all digital inputs. The parameter is camera process independent i.e. the latest settings
will apply for all camera inputs.

Table 3.5. Parameter properties of TriggerinDebounce

Property
Name

Display Name
Interface
Access policy
Visibility

Allowed values

Default value

Unit of measure

Value
TriggerInDebounce
Input Debounce
IFloat
Read/Write/Change
Beginner

Minimum 0.0
Maximum 209.71200000000002
Stepsize 0.0032

1.0
us

Example 3.4. Usage of TriggerinDebounce

/* Set */ TriggerInDebounce = 1.0;
/* Get */ value = TriggerInDebounce;

3.4.4.1.2. FrontGPI

Parameter FrontGPI is used to monitor the digital inputs of the interface card.

You can read the current state of these inputs using parameter FrontGPI. Bit 0 of the read value represents
input 0, bit 1 represents input 1 and so on. For example, if you obtain the value 10 or hexadecimal OxA the
interface card will have high level on it's digital inputs 1 and 3.

Table 3.6. Parameter properties of FrontGPI

Property
Name

Display Name
Interface
Access policy
Visibility

Allowed values

Value

FrontGPI

Digital Input at Front GPI
IInteger

Read-Only

Beginner

Minimum O
Maximum 15
Stepsize 1

Example 3.5. Usage of FrontGPI

/* Get */ value_

FrontGPI;

CXP-12 Interface Card 4C Acq_TripleCXP12Area

33

Trigger

3.4.4.1.3. TriggerinSource

To use the external trigger you have to select the input carrying the image trigger signal. Select one of the eight
inputs. four Front GPI inputs. If AreaTriggerMode is not set to external, this parameter will select the input for

the input statistics only.

Table 3.7. Parameter properties of TriggerinSource

Property Value

Name TriggerInSource

Display Name Source

Interface IEnumeration

Access policy Read/Write/Change

Visibility Beginner

Allowed values TriggerInSourceFrontGPIO

TriggerInSourceFrontGPI1
TriggerInSourceFrontGPI2
TriggerInSourceFrontGPI3

Default value TriggerInSourceFrontGPIO

Example 3.6. Usage of TriggerinSource

Front GPI Trigger Source 0
Front GPI Trigger Source 1
Front GPI Trigger Source 2
Front GPI Trigger Source 3

/* Set */ TriggerInSource = TriggerInSourceFrontGPIO;
/* Get */ value_ = TriggerInSource;

3.4.4.1.4. TriggerinPolarity

For the selected input using parameter TriggerinSource the polarity is set with this parameter.

Table 3.8. Parameter properties of TriggerinPolarity

Property Value

Name TriggerInPolarity
Display Name Polarity

Interface IEnumeration

Access policy Read/Write/Change
Visibility Beginner

Allowed values LowActive Low Active

HighActive High Active
Default value HighActive

Example 3.7. Usage of TriggerinPolarity

/* Set */ TriggerInPolarity = HighActive;
/* Get */ value_ = TriggerInPolarity;

3.4.4.1.5. TriggeriInDownscale

If you use the trigger system in external trigger mode, you can downscale the trigger inputs selected by

TriggerinSource. See TriggerinDownscalePhase for more information.

CXP-12 Interface Card 4C Acq_TripleCXP12Area

Trigger

Table 3.9. Parameter properties of TriggerinDownscale

Property Value

Name TriggerInDownscale
Display Name Input Downscale
Interface IInteger

Access policy Read/Write/Change
Visibility Beginner

Allowed values Minimum 1

Maximum 2147483647
Stepsize 1

Default value 1

Example 3.8. Usage of TriggerinDownscale

/* Set */ TriggerInDownscale = 1;
/* Get */ value = TriggerInDownscale;

3.4.4.1.6. TriggeriInDownscalePhase

Parameters TriggerinDownscale and TriggerInDownscalePhase are used to downscale external trigger inputs.
The downscale value represents the factor. For example value three will remove two out of three successive
trigger pulses. The phase is used to make the selection of the pulse in the sequence. For the given example,
a phase set to value zero will forward the first pulse and will remove pulses two and three of a sequence of
three pulses. See the following figure for more explanations.

Figure 3.19. Triggerin Dowscale

Input | | ﬁ

downscale = 2
phase =0 | | |

downscale = 2
phase =1 | |

Mind the dependency between the downscale factor and the phase. The value of the downscale factor has
to be greater than the phase!

Table 3.10. Parameter properties of TriggerinDownscalePhase

Property Value

Name TriggerInDownscalePhase
Display Name Downscale Phase

Interface IInteger

Access policy Read/Write/Change
Visibility Beginner

Allowed values Minimum 0

Maximum 4294967294
Stepsize 1

Default value 0

CXP-12 Interface Card 4C Acq_TripleCXP12Area 35

Trigger

Example 3.9. Usage of TriggerinDownscalePhase

/* Set */ TriggerInDownscalePhase = 0;
/* Get */ value_ = TriggerInDownscalePhase;

3.4.4.2. Software Trigger

3.4.4.2.1. SendSoftwareTrigger

If the trigger system is run in software triggered mode (see parameter AreaTriggerMode), this parameter is
activated. Write value '1' to this parameter to input a software trigger. If the trigger queue is activated multiple
software trigger pulses can be written to the interface card. They will fill the queue and being processed with
the maximum allowed frequency parameterized by TriggerOutputFrequency.

Note that software trigger pulses can only be written if the trigger system has been activated using parameter

TriggerState. Moreover, if the queue has not been activated, new software trigger pulses can only be written if
the trigger system is not busy. Therefore, writing to the parameter can cause an Software Trigger Busy error.

Table 3.11. Parameter properties of SendSoftwareTrigger

Property Value

Name SendSoftwareTrigger
Display Name Send Pulses

Interface ICommand

Access policy Read/Write/Change
Visibility Beginner

Example 3.10. Usage of SendSoftwareTrigger

/* Set */ SendSoftwareTrigger();

3.4.4.2.2. SoftwareTriggerisBusy

After writing one or multiple pulses to the trigger system using the software trigger, the system might be busy
for a while. To check if there are no pulses left for processing use this parameter.

Table 3.12. Parameter properties of SoftwareTriggerisBusy

Property Value

Name SoftwareTriggerIsBusy
Display Name Software Trigger Busy
Interface IBoolean

Access policy Read-Only

Visibility Beginner

Example 3.11. Usage of SoftwareTriggerisBusy

/* Get */ value = SoftwareTriggerIsBusy;

3.4.4.2.3. SoftwareTriggerQueuekFillLevel

CXP-12 Interface Card 4C Acq_TripleCXP12Area 36

Trigger

The value of this parameter represents the number of pulses in the software trigger queue which have
to be processed. The fill level depends on the number of pulses written to SendSoftwareTrigger, the
trigger pulse multiplication factor TriggerMultiplyPulses and the maximum output frequency defined by

TriggerOutputFrequency. The value decrement is given in steps of TriggerMultiplyPulses.

Table 3.13. Parameter properties of SoftwareTriggerQueueFillLevel

Property Value

Name SoftwareTriggerQueueFillLevel
Display Name Software Trigger Queue Fill Level
Interface IInteger

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0

Maximum 2040
Stepsize 1

Unit of measure pulses

Example 3.12. Usage of SoftwareTriggerQueueFillLevel

/* Get */ value = SoftwareTriggerQueueFillLevel;

3.4.4.3. InStatistics

The trigger input statistics module will offer you frequency analysis and pulse counting of the selected input. The
digital input for the statistics is selected by TriggerinPolarity. Measurements are performed after debouncing

and polarity selection but before downscaling.

3.4.4.3.1. TriggerInStatisticsSource

The trigger statistics module allows you to individually select one of the inputs as source. Select one of the

eight inputs.

Table 3.14. Parameter properties of TriggerinStatisticsSource

Property Value

Name TriggerInStatisticsSource
Display Name Statistics Source

Interface IEnumeration

Access policy Read/Write/Change

Visibility Beginner

Allowed values TriggerInSourceFrontGPIO

TriggerInSourceFrontGPI1
TriggerInSourceFrontGPI2
TriggerInSourceFrontGPI3

Default value TriggerInSourceFrontGPIO

Example 3.13. Usage of TriggerinStatisticsSource

Front GPI Trigger Source 0
Front GPI Trigger Source 1
Front GPI Trigger Source 2
Front GPI Trigger Source 3

/* Set */ TriggerInStatisticsSource = TriggerInSourceFrontGPIO;

CXP-12 Interface Card 4C Acq_TripleCXP12Area

37

Trigger

/* Get */ value = TriggerInStatisticsSource;

3.4.4.3.2. TriggerinStatisticsPolarity

For the selected input using parameter TriggerinStatisticsSource the polarity is set using this parameter.

Table 3.15. Parameter properties of TriggerinStatisticsPolarity

Property Value

Name TriggerInStatisticsPolarity
Display Name Statistics Polarity

Interface IEnumeration

Access policy Read/Write/Change

Visibility Beginner

Allowed values LowActive Low Active

HighActive High Active

Default value HighActive

Example 3.14. Usage of TriggerinStatisticsPolarity

/* Set */ TriggerInStatisticsPolarity = HighActive;
/* Get */ value = TriggerInStatisticsPolarity;

3.4.4.3.3. TriggerinStatisticsPulseCount

The input pulses are count and the current value can be read with this parameter. Use the counter for verification
of your system. For example, compare the counter value with the received number of images to check for
exceeding periods.

Table 3.16. Parameter properties of TriggerinStatisticsPulseCount

Property Value

Name TriggerInStatisticsPulseCount
Display Name Input Pulses

Interface IInteger

Access policy Read-0Only

Visibility Beginner

Allowed values Minimum 0

Maximum 65535
Stepsize 1

Unit of measure pulses

Example 3.15. Usage of TriggerinStatisticsPulseCount

/* Get */ value = TriggerInStatisticsPulseCount;

3.4.4.3.4. TriggerinStatisticsPulseCountClear

Clear the input pulse counter by writing to this register.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 38

Trigger

Table 3.17. Parameter properties of TriggerinStatisticsPulseCountClear

Property Value

Name TriggerInStatisticsPulseCountClear
Display Name Clear Pulse Count

Interface ICommand

Access policy Read/Write/Change

Visibility Beginner

Example 3.16. Usage of TriggerinStatisticsPulseCountClear

/* Set */ TriggerInStatisticsPulseCountClear();

3.4.4.3.5. TriggerinStatisticsFrequency

The current frequency can be read using this parameter. It shows the frequency of the last two received pulses
at the interface card.

Table 3.18. Parameter properties of TriggerinStatisticsFrequency

Property Value

Name TriggerInStatisticsFrequency
Display Name Current Frequency

Interface IFloat

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0.0

Maximum 3.125E8
Stepsize 2.220446049250313E-16

Unit of measure Hz

Example 3.17. Usage of TriggerinStatisticsFrequency

/* Get */ value_ = TriggerInStatisticsFrequency;

3.4.4.3.6. TriggerinStatisticsMinimumFrequency

The trigger system will memorize the minimum detected input frequency. This will give you information about
frequency peaks.

Table 3.19. Parameter properties of TriggerinStatisticsMinimumFrequency

Property Value

Name TriggerInStatisticsMinimumFrequency
Display Name Minimum Frequency

Interface IFloat

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0.0

Maximum 3.125E8
Stepsize 2.220446049250313E-16

Unit of measure Hz

CXP-12 Interface Card 4C Acq_TripleCXP12Area 39

Trigger

Example 3.18. Usage of TriggerinStatisticsMinimumFrequency

/* Get */ value_ = TriggerInStatisticsMinimumFrequency;

3.4.4.3.7. TriggerinStatisticsMaximumFrequency

The trigger system will memorize the maximum detected input frequency. This will give you information about
frequency peaks.

Table 3.20. Parameter properties of TriggerinStatisticsMaximumFrequency

Property Value

Name TriggerInStatisticsMaximumFrequency
Display Name Maximum Frequency

Interface IFloat

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0.0

Maximum 3.125E8
Stepsize 2.220446049250313E-16

Unit of measure Hz

Example 3.19. Usage of TriggerinStatisticsMaximumFrequency

/* Get */ value_ = TriggerInStatisticsMaximumFrequency;

3.4.4.3.8. TriggerinStatisticsMinMaxFrequencyClear

To clear the minimum and maximum frequency measurements, write to this register. The minimum and
maxumum frequency will then be the current input frequency.

Table 3.21. Parameter properties of TriggerinStatisticsMinMaxFrequencyClear

Property Value

Name TriggerInStatisticsMinMaxFrequencyClear
Display Name Clear Min Max Frequency

Interface ICommand

Access policy Read/Write/Change

Visibility Beginner

Example 3.20. Usage of TriggerinStatisticsMinMaxFrequencyClear

/* Set */ TriggerInStatisticsMinMaxFrequencyClear();

3.4.5. Sequencer

The sequencer is a powerful feature to generate multiple pulses out of one input pulse. It is available in external
and software trigger mode, but not in generator mode. The sequencer multiplies an input pulse using the factor
set by TriggerMultiplyPulses. The inserted pulses will have a time delay to the original signal according to
the setting made for parameter TriggerOutputFrequency. Thus, the inserted pulses are not evenly distributed

CXP-12 Interface Card 4C Acq_TripleCXP12Area 40

Trigger

between the input pulses, they will be inserted with a delay specified by TriggerOutputFrequency. Hence, it is
very important, that the multiplicate pulses with a parameterized delay will not cause a loss of input signals.

Let's have a look at an example. Suppose you have an external trigger source generating a pulse once every
second. Your input frequency will then be 1Hz. Assume that the sequencer is set to a multiplication factor of 2
and the maximum frequency defined by TriggerOutputFrequency is set to 2.1Hz.

The trigger system will forward each external pulse into the trigger system and will also generate a second
pulse 0.48 seconds later. As you can see, the multiplication frequency is chosen to be slightly higher than the
doubled input frequency. This will allow the compensation of varying input frequencies. If the time between
two pulses at the input will be less than 0.96 seconds, you will loose the second pulse. Basler recommends
the multiplication frequency to be fast enough to not loose pulses or recommends the activation of the trigger
queue for compensation. You can check for lost pulses with parameter TriggerExceededPeriodLimits.

3.4.5.1. TriggerMultiplyPulses

Set the trigger input multiplication factor.

Table 3.22. Parameter properties of TriggerMultiplyPulses

Property Value

Name TriggerMultiplyPulses
Display Name Upscale Trigger Pulses
Interface IInteger

Access policy Read/Write/Change
Visibility Beginner

Allowed values Minimum 1

Maximum 65535
Stepsize 1

Default value 1

Example 3.21. Usage of TriggerMultiplyPulses

/* Set */ TriggerMultiplyPulses = 1;
/* Get */ value_ = TriggerMultiplyPulses;

3.4.6. Queue

The maximum trigger output frequency is limited to the the setting of parameter TriggerOutputFrequency. This
can avoid the loss of trigger pulses in the camera which is hard to detect. In some cases it is possible, that
the frequency of your external trigger source varies. To prevent the loose of trigger pulses, you can activate
the trigger queue to buffer these pulses. Furthermore, the queue can be used to buffer trigger input pulses if
you use the sequencer and the software trigger.

Activate the trigger queue using parameter TriggerQueueMode.
The queue fill level can be monitored by parameter TriggerQueuefFillLevel.

Note that a fill level value n indicates that between n and n + 1 trigger pulses have to be processed by the
system. Therefore, a fill level value zero means that no more values are in the queue, but there might be still a
pulse (or multiple pulses if the sequencer is used) to be processed. There exists one exception for value zero
obtained with TriggerQueueFillLevel i.e. the parameter and not the events. This value at this parameter truly
indicates that no more pulses are in the queue and all pulses have been full processed.

3.4.6.1. TriggerQueueMode

CXP-12 Interface Card 4C Acq_TripleCXP12Area 41

Trigger

Activate the queue using this parameter. Note that a queue de-activation will erase all remaining values in
the queue.

Table 3.23. Parameter properties of TriggerQueueMode

Property Value
Name TriggerQueueMode
Display Name Queue Mode
Interface IEnumeration
Access policy Read/Write/Change
Visibility Beginner
Allowed values On On

off Off
Default value off

Example 3.22. Usage of TriggerQueueMode

/* Set */ TriggerQueueMode = Off;
/* Get */ value_ = TriggerQueueMode;

3.4.6.2. TriggerQueuekFillLevel

Obtain the currently queued pulses with this parameter. At maximum 2040 pulses can be queued. The queue
fill level includes the input pulses, i.e. the external trigger pulses in the queue or the software trigger pulses in
the queue. The fill level does not include the pulses generated by the sequencer. The fill level is zero, if the
trigger system is not busy anymore i.e. no more pulses are left to be processed.

Table 3.24. Parameter properties of TriggerQueueFillLevel

Property Value

Name TriggerQueueFillLevel
Display Name Fill Level

Interface IInteger

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0

Maximum 2040
Stepsize 1

Unit of measure pulses

Example 3.23. Usage of TriggerQueueFillLevel

/* Get */ value = TriggerQueueFilllLevel;

3.4.7. Pulse Form Generator 0

The parameters explained previously were used to generate the trigger pulses. Next, we will need to prepare the
pulses for the outputs. The area trigger system includes four individual pulse form generators. These generators
define the width and delay of the output signals and also support downscaling of pulses which can be useful if
different light sources are used successively. After parameterizing the pulse form generators you can arbitrarily
allocate the pulse form generators to the outputs.

The following figure illustrates the output of the pulse form generators and the parameters.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 42

Trigger

Figure 3.20. Pulse Form Generators

input freguency or
1/TriggerFramesPerSecond

Input | I

Pulse F — downscale 1
ulse Form phase =0
Generator 0 I I
eg. CC1
delay
width
Pul F — downscale 2
ulse Form phase = 0
Generator 1
eg flash A
i
delay width
downscale 2 —
Pulse Form phase =1
Generator 2 I I

eq.flash B
delay

Once again, note that the ranges of the parameters depend on the other settings in the pulse form generators
and on paramerter TriggerOutputFrequency. If you want to increase the frequency you might need to decrease

the width or delay of one of the pulse form generators.

Equation 3.2. Dependency of Frequency and Pulse Form Generators

Maxz{WIDTHO0, DELAY0}

DOWNSCALEO '
Max{WIDTH1,DELAY1}

DOWNSCALELI '
fps Max{WIDTH2, DELAY?2}

DOWNSCALE2 ’
Max{WIDTH3,DELAY3}

DOWNSCALE3

 fps = TriggerOutputFrequency

WIDTHIO0..3] = TriggerPulseFormGenerator[0..3]Width

DELAY]I0..3] = TriggerPulseFormGenerator[0..3]Delay

DOWNSCALE]O0..3] = TriggerPulseFormGenerator[0..3]Downscale

3.4.7.1. TriggerPulseFormGeneratorO0Downscale et al.

description applies also to

g Note
This the

parameters:

TriggerPulseFormGenerator1Downscale, TriggerPulseFormGenerator2Downscale,

TriggerPulseFormGenerator3Downscale

The trigger pulses can be downscaled. Set the downscale factor by use of this parameter. Note the dependency
between this parameter and the phase. See TriggerPulseFormGenerator[0..3]DownscalePhase for more

information.

CXP-12 Interface Card 4C Acq_TripleCXP12Area

43

Trigger

Table 3.25. Parameter properties of TriggerPulseFormGeneratorODownscale

Property Value
Name TriggerPulseFormGenerator@Downscale
Display Name Downscale
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 1
Maximum 7
Stepsize 1
Default value 1

Example 3.24. Usage of TriggerPulseFormGenerator0Downscale

/* Set */ TriggerPulseFormGenerator@Downscale = 1;
/* Get */ value_ = TriggerPulseFormGeneratorODownscale;

3.4.7.2. TriggerPulseFormGeneratorO0DownscalePhase et al.

@ Note
This description applies also to the following parameters:
TriggerPulseFormGenerator1DownscalePhase, TriggerPulseFormGenerator2DownscalePhase,
TriggerPulseFormGenerator3DownscalePhase

The parameter TriggerPulseFormGenerator[0..3]Downscale defines the number of phases and parameter
TriggerPulseFormGenerator[0..3]DownscalePhase selects the one being used. The downscale value
represents the factor. For example value three will remove two out of three successive trigger pulses. The
phase is used to make the selection of the pulse in the sequence. For the given example, a phase set to value
zero will forward the first pulse and will remove pulses two and three of a sequence of three pulses. Check
Section 3.4.7, 'Pulse Form Generator 0' for more information.

Take care of the dependency between the downscale factor and the phase. The factor has to be greater than
the phase.

Table 3.26. Parameter properties of TriggerPulseFormGenerator0DownscalePhase

Property Value
Name TriggerPulseFormGenerator@DownscalePhase
Display Name Phase
Interface IInteger
Access policy Read/Write/Change
Visibility Beginner
Allowed values Minimum 0
Maximum 6
Stepsize 1
Default value 0

Example 3.25. Usage of TriggerPulseFormGeneratorODownscalePhase

/* Set */ TriggerPulseFormGenerator0DownscalePhase = 0;
/* Get */ value = TriggerPulseFormGeneratorODownscalePhase;

CXP-12 Interface Card 4C Acq_TripleCXP12Area 44

Trigger

3.4.7.3. TriggerPulseFormGeneratorODelay et al.

g Note

This description applies also to the following parameters: TriggerPulseFormGenerator1Delay,
TriggerPulseFormGenerator2Delay, TriggerPulseFormGenerator3Delay

Set a signal delay with this parameter. The unit of this parameter is ps.

Table 3.27. Parameter properties of TriggerPulseFormGenerator0Delay

Property Value

Name TriggerPulseFormGenerator@Delay
Display Name Delay

Interface IFloat

Access policy Read/Write/Change

Visibility Beginner

Allowed values Minimum 0.0

Maximum 3.4E7
Stepsize 0.0032

Default value 0.0

Unit of measure us

Example 3.26. Usage of TriggerPulseFormGeneratorODelay

/* Set */ TriggerPulseFormGenerator@Delay = 0.0;
/* Get */ value_ = TriggerPulseFormGenerator@Delay;

3.4.7.4. TriggerPulseFormGeneratorOWidth et al.

@ Note

This description applies also to the following parameters: TriggerPulseFormGenerator1Width,
TriggerPulseFormGenerator2Width, TriggerPulseFormGenerator3Width

Set the signal width, i.e. the active time of the output signal. The unit of this parameter is pus.

Table 3.28. Parameter properties of TriggerPulseFormGenerator0Width

Property Value

Name TriggerPulseFormGeneratoroWidth
Display Name Signal Width

Interface IFloat

Access policy Read/Write/Change
Visibility Beginner

Allowed values Minimum 0.0032

Maximum 6.8E7
Stepsize 0.0032

Default value 4.0

Unit of measure ps

CXP-12 Interface Card 4C Acq_TripleCXP12Area 45

Trigger

Example 3.27. Usage of TriggerPulseFormGeneratorOWidth

/* Set */ TriggerPulseFormGeneratoréWidth = 4.0;
/* Get */ value = TriggerPulseFormGeneratorOWidth;

3.4.8. Pulse Form Generator 1

The settings for pulse form generator 1 are equal to those of pulse form generator 0. Please read Section 3.4.7,
'Pulse Form Generator 0' for a detailed description.

3.4.9. Pulse Form Generator 2

The settings for pulse form generator 2 are equal to those of pulse form generator 0. Please read Section 3.4.7,
'Pulse Form Generator O' for a detailed description.

3.4.10. Pulse Form Generator 3

The settings for pulse form generator 3 are equal to those of pulse form generator 0. Please read Section 3.4.7,
'Pulse Form Generator O' for a detailed description.

3.4.11. Camera Out Signal Mapping

The camera interface of the CXP-12 Interface Card 4C is equipped with a trigger output channel to trigger
the camera.

Moreover, two front general purpose outputs (GPOs) to the camera exist.
Please, consult the vendor's manual of your camera to identify the required signals and their mapping.

The trigger system of this applet provides several possibilities of mapping pulse sources to the camera
channels:

* Pulse form generators 0 to 3

The pulse form generators are the main output sources of the trigger system. You can either directly connect
one of the four sources to a camera signal channel or invert the signal if you need low active signals.

* Ground or Vcc if a CC line is not used or you want to temporarily deactivate or activate the line.
* The input bypass
The trigger system will ignore the signal length of the input signals. If you want to directly bypass one of the

inputs to a camera signal channel, you can set the respective channel to bypass or the inverted bypass.

3.4.11.1. TriggerCameraOutSelect

CXP-12 Interface Card 4C Acq_TripleCXP12Area 46

Trigger

Table 3.29. Parameter properties of TriggerCameraOutSelect

Property
Name
Display Name
Interface
Access policy
Visibility

Allowed values

Default value

Value

TriggerCameraOutSelect

Camera Trigger Out Mapping

IEnumeration
Read/Write/Change
Beginner

VCC

GND
CamAPulseGeneratoro0
CamAPulseGeneratorl
CamAPulseGenerator2
CamAPulseGenerator3
NotCamAPulseGenerator0
NotCamAPulseGeneratorl
NotCamAPulseGenerator2
NotCamAPulseGenerator3
CamBPulseGeneratoro0
CamBPulseGeneratorl
CamBPulseGenerator2
CamBPulseGenerator3
NotCamBPulseGeneratoro
NotCamBPulseGeneratorl
NotCamBPulseGenerator2
NotCamBPulseGenerator3
CamCPulseGenerator0
CamCPulseGeneratorl
CamCPulseGenerator2
CamCPulseGenerator3
NotCamCPulseGenerator0
NotCamCPulseGeneratorl
NotCamCPulseGenerator2
NotCamCPulseGenerator3
BypassFrontGPIO
NotBypassFrontGPIO
BypassFrontGPI1
NotBypassFrontGPI1l
BypassFrontGPI2
NotBypassFrontGPI2
BypassFrontGPI3
NotBypassFrontGPI3
PulseGenerator0
PulseGeneratorl
PulseGenerator2
PulseGenerator3
NotPulseGenerator0
NotPulseGeneratorl
NotPulseGenerator2
NotPulseGenerator3

PulseGenerator0

Example 3.28. Usage of TriggerCameraOutSelect

Vcce

Gnd

Cam A Pulse Generator 0
Cam A Pulse Generator 1
Cam A Pulse Generator 2
Cam A Pulse Generator 3
Not Cam A Pulse Generator O
Not Cam A Pulse Generator 1
Not Cam A Pulse Generator 2
Not Cam A Pulse Generator 3
Cam B Pulse Generator 0
Cam B Pulse Generator 1
Cam B Pulse Generator 2
Cam B Pulse Generator 3
Not Cam B Pulse Generator O
Not Cam B Pulse Generator 1
Not Cam B Pulse Generator 2
Not Cam B Pulse Generator 3
Cam C Pulse Generator 0
Cam C Pulse Generator 1
Cam C Pulse Generator 2
Cam C Pulse Generator 3
Not Cam C Pulse Generator 0
Not Cam C Pulse Generator 1
Not Cam C Pulse Generator 2
Not Cam C Pulse Generator 3
Bypass Front-GPI 0

Not Bypass Front-GPI 0
Bypass Front-GPI 1

Not Bypass Front-GPI 1
Bypass Front-GPI 2

Not Bypass Front-GPI 2
Bypass Front-GPI 3

Not Bypass Front-GPI 3
Pulse Generator 0

Pulse Generator 1

Pulse Generator 2

Pulse Generator 3

Not Pulse Generator 0

Not Pulse Generator 1

Not Pulse Generator 2

Not Pulse Generator 3

/* Set */ TriggerCameraOutSelect = PulseGenerator0;

CXP-12 Interface Card 4C

Acq_TripleCXP12Area

47

Trigger

/* Get */ value = TriggerCameraOutSelect;

3.4.12. Digital Output

The CXP-12 Interface Card 4C has two front general purpose outputs (GPOs).

The trigger system of this applet provides several possibilities of mapping sources to the digital output signals:

* Pulse form generators
The pulse form generators are the main output sources of the trigger system. You can either directly bypass
one of the four sources to a digital output or invert its signal. As this is a multi camera applet you can choose
any of the trigger modules for each output. For example you can select Cam A pulse form generator O for
all outputs.

* Ground or Vcc if a digital output is not used or you want to manually set the signal level.

* The input bypass
The trigger system will ignore the signal length of the input signals. If you want to bypass an input directly to

the output you can select the specific input or its inverted version.

3.4.12.1. TriggerOutSelectFrontGPOO et al.

S Note

This description applies also to the following parameters: TriggerOutSelectFrontGPO1

Select the source for the output on the repsective Front GPO.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 48

Trigger

Table 3.30. Parameter properties of TriggerOutSelectFrontGPO0

Property
Name
Display Name
Interface
Access policy
Visibility

Allowed values

Default value

Value

TriggerOutSelectFrontGP00O

Output Front GPO O
IEnumeration
Read/Write/Change
Beginner

VCC

GND
CamAPulseGeneratoro0
CamAPulseGeneratorl
CamAPulseGenerator2
CamAPulseGenerator3
NotCamAPulseGenerator0
NotCamAPulseGeneratorl
NotCamAPulseGenerator2
NotCamAPulseGenerator3
CamBPulseGeneratoro0
CamBPulseGeneratorl
CamBPulseGenerator2
CamBPulseGenerator3
NotCamBPulseGeneratoro
NotCamBPulseGeneratorl
NotCamBPulseGenerator2
NotCamBPulseGenerator3
CamCPulseGenerator0
CamCPulseGeneratorl
CamCPulseGenerator2
CamCPulseGenerator3
NotCamCPulseGenerator0
NotCamCPulseGeneratorl
NotCamCPulseGenerator2
NotCamCPulseGenerator3
BypassFrontGPIO
NotBypassFrontGPIO
BypassFrontGPI1
NotBypassFrontGPI1l
BypassFrontGPI2
NotBypassFrontGPI2
BypassFrontGPI3
NotBypassFrontGPI3
PulseGenerator0
PulseGeneratorl
PulseGenerator2
PulseGenerator3
NotPulseGenerator0
NotPulseGeneratorl
NotPulseGenerator2
NotPulseGenerator3

NotCamAPulseGenerator0

Example 3.29. Usage of TriggerOutSelectFrontGPOO0

Vcce

Gnd

Cam A Pulse Generator 0
Cam A Pulse Generator 1
Cam A Pulse Generator 2
Cam A Pulse Generator 3
Not Cam A Pulse Generator O
Not Cam A Pulse Generator 1
Not Cam A Pulse Generator 2
Not Cam A Pulse Generator 3
Cam B Pulse Generator 0
Cam B Pulse Generator 1
Cam B Pulse Generator 2
Cam B Pulse Generator 3
Not Cam B Pulse Generator O
Not Cam B Pulse Generator 1
Not Cam B Pulse Generator 2
Not Cam B Pulse Generator 3
Cam C Pulse Generator 0
Cam C Pulse Generator 1
Cam C Pulse Generator 2
Cam C Pulse Generator 3
Not Cam C Pulse Generator 0
Not Cam C Pulse Generator 1
Not Cam C Pulse Generator 2
Not Cam C Pulse Generator 3
Bypass Front-GPI 0

Not Bypass Front-GPI 0
Bypass Front-GPI 1

Not Bypass Front-GPI 1
Bypass Front-GPI 2

Not Bypass Front-GPI 2
Bypass Front-GPI 3

Not Bypass Front-GPI 3
Pulse Generator 0

Pulse Generator 1

Pulse Generator 2

Pulse Generator 3

Not Pulse Generator 0

Not Pulse Generator 1

Not Pulse Generator 2

Not Pulse Generator 3

/* Set */ TriggerOutSelectFrontGP0O® = NotCamAPulseGenerator0;

CXP-12 Interface Card 4C

Acq_TripleCXP12Area

49

Trigger

/* Get */ value = TriggerOutSelectFrontGP00;

3.4.12.2. OutStatistics

The output statistics module counts the number of output pulses. The source can be selected by parameter
TriggerQutStatisticsSource. The count value can be read from parameter TriggerOutStatisticsPulseCount.

Parameter TriggerOutStatisticsSource also selects the source for the missing frame detection functionality.

3.4.12.2.1. TriggerExceededPeriodLimits

This read-only register has value Yes if the input signal frequency exceeded the maximum allowed frequency
defined by parameter TriggerOutputFrequency. If the queue is enabled, the register is only set if the queue is
full and cannot store a new input pulse. Reading the register will not reset it. It is required to reset the register
by writing to TriggerExceededPeriodLimitsClear.

Table 3.31. Parameter properties of TriggerExceededPeriodLimits

Property
Name

Display Name
Interface
Access policy
Visibility

Allowed values

Value
TriggerExceededPeriodLimits
Trigger Exceeded Period Limits
IEnumeration

Read-Only

Beginner

Yes Yes
No No

Example 3.30. Usage of TriggerExceededPeriodLimits

/* Get */ value_ = TriggerExceededPeriodLimits;

3.4.12.2.2. TriggerExceededPeriodLimitsClear

Reset TriggerExceededPeriodLimits with this parameter.

Table 3.32. Parameter properties of TriggerExceededPeriodLimitsClear

Property
Name

Display Name
Interface
Access policy
Visibility

Value
TriggerExceededPeriodLimitsClear
Clear Exceeded Period Limits Register
ICommand

Read/Write/Change

Beginner

Example 3.31. Usage of TriggerExceededPeriodLimitsClear

/* Set */ TriggerExceededPeriodLimitsClear();

3.4.12.2.3. TriggerOutStatisticsSource

CXP-12 Interface Card 4C Acq_TripleCXP12Area

50

Trigger

Table 3.33. Parameter properties of TriggerOutStatisticsSource

Property Value

Name TriggerOutStatisticsSource
Display Name Source

Interface IEnumeration

Access policy Read/Write/Change

Visibility Beginner

Allowed values PulseGenerator® Pulse Generator 0

PulseGeneratorl Pulse Generator 1
PulseGenerator2 Pulse Generator 2
PulseGenerator3 Pulse Generator 3

Default value PulseGeneratoro0

Example 3.32. Usage of TriggerOutStatisticsSource

/* Set */ TriggerOutStatisticsSource = PulseGenerator0;
/* Get */ value_ = TriggerOutStatisticsSource;

3.4.12.2.4. TriggerOutStatisticsPulseCount

Output pulse count read register. Select the source for the
TriggerOutStatisticsSource.

Table 3.34. Parameter properties of TriggerOutStatisticsPulseCount

Property Value

Name TriggerOutStatisticsPulseCount
Display Name Pulse Count

Interface IInteger

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0

Maximum 65535
Stepsize 1

Unit of measure pulses

Example 3.33. Usage of TriggerOutStatisticsPulseCount

pulse counter

by parameter

/* Get */ value = TriggerOutStatisticsPulseCount;

3.4.12.2.5. TriggerOutStatisticsPulseCountClear

Output pulse count register clear.

Table 3.35. Parameter properties of TriggerOutStatisticsPulseCountClear

Property Value

Name TriggerOutStatisticsPulseCountClear
Display Name Clear pulse counter

Interface ICommand

Access policy Read/Write/Change

Visibility Beginner

CXP-12 Interface Card 4C Acq_TripleCXP12Area

51

Trigger

Example 3.34. Usage of TriggerOutStatisticsPulseCountClear

/* Set */ TriggerOutStatisticsPulseCountClear();

3.4.12.2.6. MissingCameraFrameResponse

This applet is equipped with a detection of missing camera frame responses to trigger pulses. If the camera will
not send a frame for each output trigger pulse, the register is set to Yes until cleared by writing to parameter
MissingCameraFrameResponseClear.

The idea of the frame loss detection is that for every trigger pulse generated by the trigger system, the camera
will send a frame to the interface card. If a trigger pulse gets lost, or the camera cannot send a frame, this
register will be set to Yes. Technically, between two output signal edges, a incoming image has to exist. Or in
other words: There must not be two or more successive trigger start edges without a valid frame in between.
The following figure illustrates the behavior.

Figure 3.21. Missing Camera Frame Response

Two successive rising CC
edges without a rising FVAL
edge in between
-> missing frame

3
G-

FVAL response to 0 response to 1 | | response to 3 |

The pulse form generator allocated to the camera trigger signal line carrying the image trigger pulses has to
be selected by TriggerOutStatisticsSource. The missing frame response system might not work correct for all
camera models due to different timings.

@ Select Camera Control/Trigger Signal Line

Take care to select the pulse form generator feeding the camera trigger signal line which carries
the image trigger pulses by setting parameter TriggerOutStatisticsSource to the respective source.

O Acquisition Start Before Trigger Activation

Keep in mind to start the acquisition before activating the trigger. Otherwise, the trigger pulses
sent will get lost. Also keep in mind, that any changes of the camera configuration might result in
invalid data transfers.

Table 3.36. Parameter properties of MissingCameraFrameResponse

Property Value
Name MissingCameraFrameResponse
Display Name Missing Camera Frame Response
Interface IEnumeration
Access policy Read-0Only
Visibility Beginner
Allowed values Yes Yes
No No

CXP-12 Interface Card 4C Acq_TripleCXP12Area 52

Trigger

Example 3.35. Usage of MissingCameraFrameResponse

/* Get */ value = MissingCameraFrameResponse;

3.4.12.2.7. MissingCameraFrameResponseClear

Clear the MissingCameraFrameResponse flag by writing to this parameter.

Table 3.37. Parameter properties of MissingCameraFrameResponseClear

Property Value

Name MissingCameraFrameResponseClear

Display Name Clear Missing Camera Frame Response Register
Interface ICommand

Access policy Read/Write/Change

Visibility Beginner

Example 3.36. Usage of MissingCameraFrameResponseClear

/* Set */ MissingCameraFrameResponseClear();

CXP-12 Interface Card 4C Acq_TripleCXP12Area

53

Chapter 4. BufferStatus

The applet processes image data as fast as possible. Any image data sent by the camera is immediately
processed and sent to the PC. The latency is minimal. In general, only one concurrent image line is stored
and processed in the interface card. However, the transfer bandwidth to the PC via DMA channel can vary
caused by interrupts, other hardware and the current CPU load. Also, the camera frame rate can vary due to
an fluctuating trigger. For these cases, the applet is equipped with a memory to buffer the input frames. The fill
level of the buffer can be obtained by reading from parameter FillLevel.

In normal operation conditions the buffer will always remain almost empty. For fluctuating camera bandwidths
or for short and fast acquisitions, the buffer can easily fill up quickly. Of course, the input bandwidth must not
exceed the maximum bandwidth of the applet. Check Section 1.2, 'Bandwidth' for more information.

If the buffer's fill level reaches 100%, the applet is in overflow condition, as no more data can be buffered and
camera data will be discarded. In this case, the applet is in an illegal condition and the correct functionality
can not be guaranteed. As overflows occur in very short periods, there is no possibility to detect an overflow
in this specific applet. Ensure that the buffer fill level always is at a minimum. In other applets, events can be
used to detect overflow states.

4.1. FillLevel

The fill-level of the interface card buffers used in this applet can be read-out by use of this parameter. The value
allows to check if the mean input bandwidth of the camera is to high to be processed with the applet.

Table 4.1. Parameter properties of FillLevel

Property Value

Name FillLevel

Display Name Buffer fill level

Interface IInteger

Access policy Read-Only

Visibility Beginner

Allowed values Minimum O
Maximum 100
Stepsize 1

Unit of measure %

Example 4.1. Usage of FillLevel

/* Get */ value_ = FilllLevel;

4.2. Overflow

If the applet runs into overflow, a value "1" can be read by the use of this parameter. Note that an overflow
results in loss of images. To avoid overflows reduce the mean input bandwidth.

The parameter is reset at each readout cycle. The program microDisplayX will continuously poll the value, thus
the occurrence of an overflow might not be visible in microDisplayX.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 54

BufferStatus

Table 4.2. Parameter properties of Overflow

Property Value

Name Overflow

Display Name Buffer overflow

Interface IInteger

Access policy Read-Only

Visibility Beginner

Allowed values Minimum 0
Maximum 1
Stepsize 1

Example 4.2. Usage of Overflow

/* Get */ value = Overflow;

CXP-12 Interface Card 4C

Acq_TripleCXP12Area

55

Chapter 5. Output Format

The following parameter can be used to configure the applet's image output format i.e. the format and bit
alignment.

g Automatic Adaptation of the Output Format by the GenTL Adaptor

The GenTL adaptor can automatically set the output format based on the camera settings and
a given mapping table. Changing the output format of the applet might get overwritten by the
GenTL adaptor on acquisition start. You can only set the output format if this automatic adaptation
is disabled. See the GenTL documentation parameter AutomaticFormatControl for more
details.

The automatic adaptation applies for parameters PixelFormat, Format, BitAlignment and
CustomBitShiftRight.

Depending on the setting of GenTL interface parameter OutputPackedFormats the automatic
adaptation will either use the same pixel format as coming from the camera or an unpacked PC
output format. Changing the output format of the applet might get overwritten by the GenTL on
acquisition start. You can only set the output format if this automatic adaptation is disabled. See
the GenTL documentation parameter AutomaticFormatControl for more details.

g Output Format Setting Defines GenTL Buffer Info

The parameters define the DMA output format and therefore the GenTL buffer info values to inform
the consumer about the used output pixel format of the interface.

5.1. Format

Parameter Format is used to set and determine the output formats of the DMA channels. An output format
value specifies the number of bits and the color format of the output.

This applet has an internal processing bit width of 16 bits. Any selected camera pixel format is mapped to
this internal bit width. Check the camera parameter section to learn about the mapping of the camera bits

to the internal bit width. For a definition on how to map the internal bits to the output bits, check parameter
BitAlignment.

This applet has no integrated color converter. If you select a different color pixel format between the input and
output no valid output data can be generated.

This applet supports the following output formats:
* BGR8 and RGB8: 24 bit BGR/RGB color format with 8 bit/component.
* BGRa8 and BGRa8: Color format with 8 bit/‘component. Component "a" has value zero.

* BGR10p and RGB10p: 30 bit BGR/RGB color format with 10 bit/component.

@ 30 Bit Output Format

Note that in the 30 bit output format 1 pixel and its 3 color components are distributed over
multiple bytes. Also, two successive pixel might share one byte. The pixel are directly aligned
in memory. Thus 8 successive color components are stored in 10 byte. The DMA transfer might
be filled with random content for the last bytes.

* BGR12p and RGB12p: 36 bit BGR/RGB color format with 12 bit/component.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 56

Output Format

K

36 Bit Output Format

Note that in the 36 bit output format 1 pixel and its 3 color components are distributed over
multiple bytes. Also, two successive pixel might share one byte. The pixel are directly aligned in
memory. Thus 2 successive color components are stored in 3 byte or two pixel in 9 Byte. The
DMA transfer might be filled with random content for the last bytes.

BGR14p and RGB14p: 42 bit BGR/RGB color format with 14 bit/component.

K

42 Bit Output Format

Note that in the 42 bit output format 1 pixel and its 3 color components are distributed over
multiple bytes. Also, two successive pixel might share one byte. The pixel are directly aligned in
memory. Thus 4 successive color components are stored in 7 byte or four pixel in 21 Byte. The
DMA transfer might be filled with random content for the last bytes.

BGR16 and RGB16: 48 bit BGR/RGB color format with 16 bit/component.

N

BGR vs. RGB Memory Alignement

Note that the color components are either written to the PC buffer in the common blue, green, red
(BGR) or red, green, blue order. So either the blue or red color component is at the lower memory
address.

Mono8: 8 bit grayscale format

Mono10p: 10 bit grayscale format

K

10 Bit Output Format

Note that in the 10 bit output format 1 pixel is distributed over more than one byte. Also, two
successive pixel share one byte. The pixel are directly aligned in memory. Thus 8 successive
pixel are stored in 10 byte. The DMA transfer might be filled with random content for the last
bytes.

Mono12p: 12 bit grayscale format

K

12 Bit Output Format

Note that in the 12 bit output format 1 pixel is distributed over more than one byte. Also,
two successive pixel share the same byte. The pixel are directly aligned in memory. Thus 2
successive pixel are stored in 3 byte. The DMA transfer might be filled with random content for
the last bytes.

Mono14p: 14 bit grayscale format

K

14 Bit Output Format

Note that in the 14 bit output format 1 pixel is distributed over more than one byte. Also,
two successive pixel share the same byte. The pixel are directly aligned in memory. Thus 12
successive pixel are stored in 21 byte. The DMA transfer might be filled with random content
for the last bytes.

Mono16: 16 bit grayscale format

X

DMA Bandwidth

Keep in mind that for the 16 bit output mode, the DMA bandwidth might not be sufficient to
process the camera input data. Check Section 1.2, 'Bandwidth' for more information.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 57

Output Format

+ BayerGRS8, BayerRG8, BayerGB8 and BayerBG8: 8 bit Bayer format Green-followed-by-Red, Red-
followed-by-Green, Green-followed-by-Blue and Blue-followed-by-Green.

* BayerGR10p, BayerRG10p, BayerGB10p and BayerBG10p: 10 bit Bayer format Green-followed-by-Red,
Red-followed-by-Green, Green-followed-by-Blue and Blue-followed-by-Green.

@ 10 Bit Output Format

Note that in the 10 bit output format 1 pixel is distributed over more than one byte. Also, two
successive pixel share one byte. The pixel are directly aligned in memory. Thus 8 successive
pixel are stored in 10 byte. The DMA transfer might be filled with random content for the last
bytes.

* BayerGR12p, BayerRG12p, BayerGB12p and BayerBG12p: 12 bit Bayer format Green-followed-by-Red,
Red-followed-by-Green, Green-followed-by-Blue and Blue-followed-by-Green.

@ 12 Bit Output Format

Note that in the 12 bit output format 1 pixel is distributed over more than one byte. Also,
two successive pixel share the same byte. The pixel are directly aligned in memory. Thus 2
successive pixel are stored in 3 byte. The DMA transfer might be filled with random content for
the last bytes.

* BayerGR14p, BayerRG14p, BayerGB14p and BayerBG14p: 14 bit Bayer format Green-followed-by-Red,
Red-followed-by-Green, Green-followed-by-Blue and Blue-followed-by-Green.

@ 14 Bit Output Format

Note that in the 14 bit output format 1 pixel is distributed over more than one byte. Also,
two successive pixel share the same byte. The pixel are directly aligned in memory. Thus 12
successive pixel are stored in 21 byte. The DMA transfer might be filled with random content
for the last bytes.

+ BayerGR16, BayerRG16, BayerGB16 and BayerBG16: 16 bit Bayer format Green-followed-by-Red, Red-
followed-by-Green, Green-followed-by-Blue and Blue-followed-by-Green.

O DMA Bandwidth

Keep in mind that for the 16 bit output mode, the DMA bandwidth might not be sufficient to
process the camera input data. Check Section 1.2, 'Bandwidth' for more information.

* YCbCr422_8: YUV 422 output in 8 bit per component.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 58

Output Format

Table 5.1. Parameter properties of Format

Property Value

Name Format

Display Name Output Format

Interface IEnumeration

Access policy Read/Write

Visibility Beginner

Allowed values Mono8 Mono 8bit
Monol0p Mono 10bit
Monol2p Mono 12bit
Monol4p Mono 14bit
Monol6 Mono 16bit
BGR8 BGR 8bit
BGR10Op BGR 10bit
BGR12p BGR 12bit
BGR14p BGR 14bit
BGR16 BGR 16bit
RGB8 RGB 8bit
RGB10Op RGB 10bit
RGB12p RGB 12bit
RGB14p RGB 14bit
RGB16 RGB 16bit
BGRa8 BGRA 8bit
BGRa8 RGBA 8bit
BayerGR8 BayerGR8
BayerGR10Op BayerGR10
BayerGR12p BayerGR12
BayerGR14p BayerGR14
BayerGR16 BayerGR16
BayerRG8 BayerRG8
BayerRG1l0p BayerRG10
BayerRG1l2p BayerRG12
BayerRGl4p BayerRG14
BayerRGl6 BayerRG16
BayerGB8 BayerGB8
BayerGB1Op BayerGB10
BayerGB12p BayerGB12
BayerGB14p BayerGB14
BayerGB16 BayerGB16
BayerBG8 BayerBG8
BayerBG1l0Op BayerBG10
BayerBGl2p BayerBG12
BayerBGl4p BayerBG14
BayerBGl6 BayerBG16
YCbCr422_8 YUV422 8bit

Default value Mono8

Example 5.1. Usage of Format

/* Set */ Format
/* Get */ value_

Mono8;
Format;

5.2. BitAlignment

CXP-12 Interface Card 4C Acq_TripleCXP12Area

Output Format

The bit alignment is used to map the pixel bits of the internal processing with a depth of 16 bit to the configured
DMA output bit depth defined by parameter Format.

You can select three different modes: Left aligned, right aligned and a custom shift mode. If you select left
aligned, the applet will map the upper bits of the internal processing bit width to the available output bits. If
you select right aligned, the applet will map the lower bits of the internal processing bit width to the available
output bits. If you want to define a custom bit shift, you'll need to set the parameter to CustomBitShift and use
parameter CustomBitShiftRight to define the bit shift.

Keep in mind that the internal processing bit width has nothing to do with the camera pixel format. Check the
camera parameter section to learn about the mapping of the camera bits to the internal bit width.

Table 5.2. Parameter properties of BitAlignment

Property Value

Name BitAlignment

Display Name Alignment

Interface IEnumeration

Access policy Read/Write/Change

Visibility Beginner

Allowed values LeftAligned Left Aligned

RightAligned Right Aligned
CustomBitShift Custom Bit Shift

Default value LeftAligned

Example 5.2. Usage of BitAlignment

/* Set */ BitAlignment = LeftAligned;
/* Get */ value = BitAlignment;

5.3. PixelDepth

The pixel depth read-only parameter is used to determine the number of bits used to process a pixel in the
applet. It represents the internal bit width.

Table 5.3. Parameter properties of PixelDepth

Property Value

Name PixelDepth
Display Name Pixel Depth
Interface IInteger
Access policy Read-Only
Visibility Beginner
Allowed values Minimum 0

Maximum 128
Stepsize 1

Unit of measure bit

Example 5.3. Usage of PixelDepth

/* Get */ value_ = PixelDepth;

5.4. CustomBitShiftRight

CXP-12 Interface Card 4C Acq_TripleCXP12Area 60

Output Format

This parameter can only be used if parameter BitAlignment is set to CustomBitShift. If it is enabled, you can
define a custom right bit shift value for the DMA output of the interface card. A shift of 0 means that the most
significant bits (MSB) of the internal processing bit width are mapped to the output MSB. For example, if the
applet has an internal processing bit width of 12 bit and you select a 10 bit output, the upper 10 bits are mapped
to the output. If you select however a bit width of two, the lower 10 bits are mapped to the output. Note that
this applet has an internal bit width of 16 bits.

Table 5.4. Parameter properties of CustomBitShiftRight

Property Value

Name CustomBitShiftRight
Display Name Bit Shift Right
Interface IInteger

Access policy Read/Write/Change
Visibility Beginner

Allowed values Minimum 0

Maximum 15
Stepsize 1

Default value 0

Unit of measure bit

Example 5.4. Usage of CustomBitShiftRight

/* Set */ CustomBitShiftRight = 0;
/* Get */ value = CustomBitShiftRight;

CXP-12 Interface Card 4C Acq_TripleCXP12Area 61

Chapter 6. Revision History

AW00158201000 19 February 2021

Initial version of this document

CXP-12 Interface Card 4C Acq_TripleCXP12Area

62

Glossary

Area of Interest (AOI)

Board
Board ID Number

Camera Index
Camera Port

Camera Tap

Device

Direct
(DMA)

Memory Access

DMA Channel

DMA Index

Event

See Region of Interest.

A Basler hardware. Usually, a board is represented by a interface card. Boards
might comprise multiple devices.

An identification number of a Basler board in a PC system. The number is not
fixed to a specific hardware but has to be unique in a PC system.

The index of a camera connected to a interface card. The first camera will have
index zero. Mind the difference between the camera index and the interface
card camera port.

See also Camera Port.

The Basler interface card connectors for cameras are called camera ports.
They are numbered {0, 1, 2, ...} or enumerated {A, B, C, ... }. Depending on
the interface one camera could be connected to multiple camera ports. Also,
multiple cameras could be connected to one camera port.

See Tap.

A board can consist of multiple devices. Devices are numbered. The first
device usually has number one.

A DMA transfer allows hardware subsystems within the computer to access
the system memory independently of the central processing unit (CPU).

Basler uses DMAs for data transfer such as image data between a board
e.g. a interface card and a PC. Data transfers can be established in multiple
directions i.e. from a interface card to the PC (download) and from the PC
to a interface card (upload). Multiple DMA channels may exist for one board.
Control and configuration data usually do not use DMA channels.

See DMA Index.

The index of a DMA transfer channel.
See also Direct Memory Access.

In programming or runtime environments, a callback function is a piece of
executable code that is passed as an argument, which is expected to call
back (execute) exactly that time an event is triggered. These events are not
related to a special camera functionality and based on interface card internal
functionality.

Basler uses hardware interrupts for the event transfer and processing is
absolutely optimized for low latency. These interrupts are only produced by the
interface card if an event is registered and activated by software. If an event
is fired at a very high frequency this may influence the system performance.

For example these events can be used to check the reliability between a frame
trigger input and the resulting and expected camera frame.

Our Runtime/SDK enables an application to get these event notifications
about certain state changes at the data flow from camera to RAM and
the image and trigger processing as well. Please consult our Runtime/
SDK documentation for more details concerning the implementation of this
functionality. Some events are enabled to produce additional data, which is
described for the event itself.

CXP-12 Interface Card 4C

Acq_TripleCXP12Area 63

Glossary

Frame Grabber

GenlCam

GenTL

Interface Card

Port

Process

Region of Interest (ROI)

Sensor Tap
Software Callback

Tap

Trigger

Trigger Input

Trigger Output

Trigger Reliability

Usually a PC hardware using PCI express to interface the camera and grab
camera images. The frame grabber will grab, buffer, pre-process and forward
the images to the PC memory. Moreover, the frame grabber performs the
trigger signal processing to trigger the camera, external lights and controllers.
On V-series frame grabber custom processing can be implemented using
VisualApplets.

See also Direct Memory Access, Interface Card, VisualApplets.

Generic Interface for Cameras is a generic programming interface for machine
vision (industrial) cameras.

GenlCam Transport Layer. This is the transport layer interface for enumerating
cameras, grabbing images from the camera, and moving them to the user
application.

Usually a PC hardware using PCI express to interface the camera and grab
camera images. The interface card will grab, buffer and forward the images
to the PC memory. Moreover, the interface card performs the trigger signal
processing to trigger the camera, external lights and controllers.

See also Direct Memory Access, Frame Grabber.

See Camera Port.

An image or signal data processing block. A process can include one or more
cameras, one or more DMA channels and modules.

Represents a part of a frame. Mostly rectangular and within the original image
boundaries. Defined by source coordinates and its dimension. The interface
card cuts the region of interest from the camera image. A region of interest
might reduce or increase the required bandwidth and the corresponding image
dimension.

See Tap.
See Event.

Some cameras have multiple taps. This means, they can acquire or transfer
more than one pixel at a time which increses the camera's acquisition
speed. The camera sensor tap readout order varies. Some cameras read
the pixels interlaced using multiple taps, while some cameras read the pixel
simultaneously from different locations on the sensor. The reconstruction of
the frame is called sensor readout correction.

The Camera Link interface is also using multiple taps for image transfer to
increase the bandwidth. These taps are independent from the sensor taps.

In machine vision and image processing, a trigger is an event which causes an
action. This can be for example the initiation of a new line or frame acquisition,
the control of external hardware such as flash lights or actions by a software
applications. Trigger events can be initiated by external sources, an internal
frequency generator (timer) or software applications. The event itself is mostly
based on a rising or falling edge of a electrical signal.

A logic input of a trigger 10. The first input has index 0. Check mapping of
input pins to logic inputs in the hardware documentation.

A logic output of a trigger 10. The first output has index 1. Please check the
mapping of output pins to logic outputs in the hardware documentation. The
electrical characteristics and specification can be found related to the selected
or used trigger board/connector.

See Event.

CXP-12 Interface Card 4C

Acq_TripleCXP12Area 64

Glossary

User Interrupt See Event.
VisualApplets Simple programming of FPGA-based image processing devices.

VisualApplets enables access to the FPGA processors in the image
processing hardware, such as frame grabbers, industrial cameras and image
processing devices, to implement individual image processing applications.

CXP-12 Interface Card 4C Acq_TripleCXP12Area 65

Index
A

AreaTriggerMode, 29

B

Bandwidth, 2
BitAlignment, 59

C

Camera

Format, 5

Interface, 4
CoaXPress, 5
CorrectedErrorCount, 8
CustomBitShiftRight, 60
CxpTriggerPacketMode, 6

E

Events
Digital Inputs, 37
Trigger Lost Detection, 50
Trigger Queue, 41

F

Features, 1
FillLevel, 54
Format, 56, 56
FrontGPI, 33
G

GPI, 33

Image Transfer, 4

MissingCameraFrameResponse, 52
MissingCameraFrameResponseClear, 53

(0

Output Format, 56
Overflow, 54, 54, 54

P
PacketTagErrorCount, 7
PC Interface, 4

Pixel Format, 5
PixelDepth, 60
PixelFormat, 5

S

SendSoftwareTrigger, 36
SoftwareTriggerlsBusy, 36
SoftwareTriggerQueuefFillLevel, 36

CXP-12 Interface Card 4C

Acq_TripleCXP12Area

66

Index

Specifications, 1
SystemmonitorCxplmageLineMode, 10
SystemmonitorPacketbufferOverflowCount, 9
SystemmonitorPacketbufferOverflowSource, 9
SystemmonitorUsedCxpConnections, 7

T

Trigger, 12, 12
Activate, 30
Busy, 36
Bypass, 28
Camera Signal Mapping, 46
Debounce, 32
Debugging, 28
Digital Input, 15, 33
Digital Input Output Mapping, 15
Digital Output, 15, 17, 48
Downscale Input, 34
Encoder, 17
Error Detection, 28
Exceeded Period Limits, 50
Exsync, 17
External, 17, 29, 32
Flash, 17, 20
Frame Rate, 16
Framerate, 31
Generator, 16, 29
GPI, 33
Grabber Controlled, 16
Image Trigger, 17
Input, 32, 33
Input Statistics, 37
IO Triggered, 17
Length, 17
Lost Trigger, 28, 50
Missing Frame Response, 52
Mode, 29
Multi Camera, 28
Multiply Pulses, 40
Output, 48
Output Statistics, 50
Period, 31
Pin Allocation, 15
Polarity Input, 34, 38
Pulse Form Generator, 42
Pulse Multiplication, 20
Queue, 25, 27, 41
Sequencer, 20, 40
Signal Length, 17
Signal Width, 17
Software Controlled, 36
Software Trigger, 23, 29, 36
Start, 30
Stop, 30
Synchronized, 28, 29
Synchronized Cameras, 28
System Analysis, 28
Trigger 10, 15

CXP-12 Interface Card 4C Acq_TripleCXP12Area

67

Index

Width, 17
Trigger::Camera Out Signal Mapping, 46
Trigger::Digital Output, 48
Trigger::Digital Output::Statistics, 50
Trigger::Pulse Form Generator 0, 42
Trigger::Pulse Form Generator 1, 46
Trigger::Pulse Form Generator 2, 46
Trigger::Pulse Form Generator 3, 46
Trigger::Queue, 41
Trigger::Sequencer, 40
Trigger:: Trigger Input, 32
Trigger::Trigger Input::External, 32
Trigger::Trigger Input::Software Trigger, 36
Trigger::Trigger Input::Statistics, 37
TriggerAcknowledgementCount, 10
TriggerCameraOutSelect, 46
TriggerEventCount, 10
TriggerExceededPeriodLimits, 50
TriggerExceededPeriodLimitsClear, 50
TriggerinDebounce, 32
TriggerinDownscale, 34
TriggerinDownscalePhase, 35
TriggerinPolarity, 34
TriggerinSource, 34
TriggerinStatisticsFrequency, 39
TriggerinStatisticsMaximumFrequency, 40
TriggerinStatisticsMinimumFrequency, 39
TriggerinStatisticsMinMaxFrequencyClear, 40
TriggerinStatisticsPolarity, 38
TriggerInStatisticsPulseCount, 38
TriggerinStatisticsPulseCountClear, 38
TriggerinStatisticsSource, 37
TriggerMultiplyPulses, 22, 41
TriggerOutputFrequency, 19, 31
TriggerOutSelectFrontGPOO, 48
TriggerOutSelectFrontGPO1, 48
TriggerOutStatisticsPulseCount, 51
TriggerOutStatisticsPulseCountClear, 51
TriggerOutStatisticsSource, 50
TriggerPulseFormGeneratorODelay, 45
TriggerPulseFormGeneratorODownscale, 43
TriggerPulseFormGeneratorODownscalePhase, 44
TriggerPulseFormGeneratorOWidth, 45
TriggerPulseFormGenerator1Delay, 45
TriggerPulseFormGenerator1Downscale, 43
TriggerPulseFormGenerator1DownscalePhase, 44
TriggerPulseFormGenerator1Width, 45
TriggerPulseFormGenerator2Delay, 45
TriggerPulseFormGenerator2Downscale, 43
TriggerPulseFormGenerator2DownscalePhase, 44
TriggerPulseFormGenerator2Width, 45
TriggerPulseFormGenerator3Delay, 45
TriggerPulseFormGenerator3Downscale, 43
TriggerPulseFormGenerator3DownscalePhase, 44
TriggerPulseFormGenerator3Width, 45
TriggerQueueFillLevel, 42
TriggerQueueMode, 41
TriggerState, 30

CXP-12 Interface Card 4C Acq_TripleCXP12Area

68

Index

TriggerWaveViolation, 11
U

UncorrectedErrorCount, 8

CXP-12 Interface Card 4C

Acq_TripleCXP12Area

69

	Acq_TripleCXP12Area for CXP-12 Interface Card 4C
	Table of Contents
	Chapter 1. Introduction
	1.1. Features of Applet Acq_TripleCXP12Area
	1.1.1. Parameterization Order

	1.2. Bandwidth
	1.3. Requirements
	1.3.1. Software Requirements
	1.3.2. Hardware Requirements
	1.3.3. License

	1.4. Camera Interface
	1.5. Image Transfer to PC Memory

	Chapter 2. CoaXPress
	2.1. PixelFormat
	2.2. CxpTriggerPacketMode
	2.3. SystemmonitorUsedCxpConnections
	2.4. PacketTagErrorCount
	2.5. CorrectedErrorCount
	2.6. UncorrectedErrorCount
	2.7. SystemmonitorPacketbufferOverflowCount
	2.8. SystemmonitorPacketbufferOverflowSource
	2.9. SystemmonitorCxpImageLineMode
	2.10. TriggerEventCount
	2.11. TriggerAcknowledgementCount
	2.12. TriggerWaveViolation

	Chapter 3. Trigger
	3.1. Features and Functional Blocks of Area Trigger
	3.2. Digital Input/Output Mapping
	3.3. Trigger Scenarios
	3.3.1. Internal Frequency Generator / interface card Controlled
	3.3.2. External Trigger Signals / IO Triggered
	3.3.3. Control of Two Flash Lights
	3.3.4. Software Trigger
	3.3.5. Software Trigger with Trigger Queue
	3.3.6. External Trigger with Trigger Queue
	3.3.7. Bypass External Trigger Signals
	3.3.8. Multi Camera Applications / Synchronized Cameras
	3.3.9. Hardware System Analysis and Error Detection / Trigger Debugging

	3.4. Parameters
	3.4.1. AreaTriggerMode
	3.4.2. TriggerState
	3.4.3. TriggerOutputFrequency
	3.4.4. Trigger Input
	3.4.4.1. External
	3.4.4.1.1. TriggerInDebounce
	3.4.4.1.2. FrontGPI
	3.4.4.1.3. TriggerInSource
	3.4.4.1.4. TriggerInPolarity
	3.4.4.1.5. TriggerInDownscale
	3.4.4.1.6. TriggerInDownscalePhase

	3.4.4.2. Software Trigger
	3.4.4.2.1. SendSoftwareTrigger
	3.4.4.2.2. SoftwareTriggerIsBusy
	3.4.4.2.3. SoftwareTriggerQueueFillLevel

	3.4.4.3. InStatistics
	3.4.4.3.1. TriggerInStatisticsSource
	3.4.4.3.2. TriggerInStatisticsPolarity
	3.4.4.3.3. TriggerInStatisticsPulseCount
	3.4.4.3.4. TriggerInStatisticsPulseCountClear
	3.4.4.3.5. TriggerInStatisticsFrequency
	3.4.4.3.6. TriggerInStatisticsMinimumFrequency
	3.4.4.3.7. TriggerInStatisticsMaximumFrequency
	3.4.4.3.8. TriggerInStatisticsMinMaxFrequencyClear

	3.4.5. Sequencer
	3.4.5.1. TriggerMultiplyPulses

	3.4.6. Queue
	3.4.6.1. TriggerQueueMode
	3.4.6.2. TriggerQueueFillLevel

	3.4.7. Pulse Form Generator 0
	3.4.7.1. TriggerPulseFormGenerator0Downscale et al.
	3.4.7.2. TriggerPulseFormGenerator0DownscalePhase et al.
	3.4.7.3. TriggerPulseFormGenerator0Delay et al.
	3.4.7.4. TriggerPulseFormGenerator0Width et al.

	3.4.8. Pulse Form Generator 1
	3.4.9. Pulse Form Generator 2
	3.4.10. Pulse Form Generator 3
	3.4.11. Camera Out Signal Mapping
	3.4.11.1. TriggerCameraOutSelect

	3.4.12. Digital Output
	3.4.12.1. TriggerOutSelectFrontGPO0 et al.
	3.4.12.2. OutStatistics
	3.4.12.2.1. TriggerExceededPeriodLimits
	3.4.12.2.2. TriggerExceededPeriodLimitsClear
	3.4.12.2.3. TriggerOutStatisticsSource
	3.4.12.2.4. TriggerOutStatisticsPulseCount
	3.4.12.2.5. TriggerOutStatisticsPulseCountClear
	3.4.12.2.6. MissingCameraFrameResponse
	3.4.12.2.7. MissingCameraFrameResponseClear

	Chapter 4. BufferStatus
	4.1. FillLevel
	4.2. Overflow

	Chapter 5. Output Format
	5.1. Format
	5.2. BitAlignment
	5.3. PixelDepth
	5.4. CustomBitShiftRight

	Chapter 6. Revision History
	Glossary
	Index

