
Basler AG | January 2024
rc_visard 3D Stereo Sensor
ASSEMBLY AND OPERATING MANUAL

Revisions

This product may be modified without notice, when necessary, due to product improvements, modifications, orchanges in specifications. If such modification is made, the manual will also be revised; see revision information.
Documentation Revision 24.01.1 Jan 29, 2024
Applicable to rc_visard firmware 24.01.x

Distributor:
Basler AG
An der Strusbek 60-62
D-22926 Ahrensburg
Germany
Web: http://www.baslerweb.com
Email: info@baslerweb.com
Phone: +49 4102 463 0

Basler AGManual: rc_visard 1 Rev: 24.01.1Status: Jan 29, 2024

http://www.baslerweb.com
mailto:info@baslerweb.com

Contents

Contents

1 Introduction 51.1 Overview . 51.2 Warranty . 71.3 Applicable standards . 81.3.1 Interfaces . 81.3.2 Approvals . 81.3.3 Standards . 81.4 Information on disposal . 91.5 Glossary . 11
2 Safety 132.1 General warnings . 132.2 Intended use . 14
3 Hardware specification 153.1 Scope of delivery . 153.2 Technical specification . 163.3 Environmental and operating conditions . 193.4 Power-supply specifications . 193.5 Wiring . 203.6 Mechanical interface . 223.7 Coordinate frames . 23
4 Installation 254.1 Software license . 254.2 Power up . 254.3 Discovery of rc_visard devices . 264.3.1 Resetting configuration . 264.4 Network configuration . 274.4.1 Host name . 284.4.2 Automatic configuration (factory default) . 284.4.3 Manual configuration . 29
5 Measurement principles 305.1 Stereo vision . 305.2 Sensor dynamics . 31
6 Software modules 336.1 3D camera modules . 336.1.1 Camera . 336.1.2 Stereo matching . 436.2 Navigation modules . 566.2.1 Sensor dynamics . 576.2.2 Visual odometry . 656.2.3 Stereo INS . 696.2.4 SLAM . 70

Basler AGManual: rc_visard 2 Rev: 24.01.1Status: Jan 29, 2024

Contents

6.3 Detection modules . 776.3.1 LoadCarrier . 776.3.2 TagDetect . 916.3.3 ItemPick and BoxPick . 1036.3.4 SilhouetteMatch . 1336.4 Configuration modules . 1686.4.1 Hand-eye calibration . 1686.4.2 CollisionCheck . 1896.4.3 Camera calibration . 1976.4.4 IO and Projector Control . 2046.5 Database modules . 2076.5.1 LoadCarrierDB . 2076.5.2 RoiDB . 2156.5.3 GripperDB . 222
7 Interfaces 2337.1 Web GUI . 2337.1.1 Accessing the Web GUI . 2337.1.2 Exploring the Web GUI . 2347.1.3 Web GUI access control . 2347.1.4 Downloading camera images . 2357.1.5 Downloading depth images and point clouds . 2357.2 GigE Vision 2.0/GenICam image interface . 2367.2.1 GigE Vision ports . 2367.2.2 Important GenICam parameters . 2367.2.3 Important standard GenICam features . 2367.2.4 Custom GenICam features of the rc_visard . 2417.2.5 Chunk data . 2447.2.6 Provided image streams . 2447.2.7 Image stream conversions . 2457.3 REST-API interface . 2467.3.1 General API structure . 2467.3.2 Migration from API version 1 . 2487.3.3 Available resources and requests . 2487.3.4 Data type definitions . 2797.3.5 Swagger UI . 2917.4 The rc_dynamics interface . 2957.4.1 Starting/stopping dynamic-state estimation . 2957.4.2 Configuring data streams . 2957.4.3 Data-stream protocol . 2967.4.4 rc_dynamics_api . 2987.5 KUKA Ethernet KRL Interface . 2987.5.1 Ethernet connection configuration . 2997.5.2 Generic XML structure . 2997.5.3 Services . 3007.5.4 Parameters . 3047.5.5 Migration to firmware version 22.01 . 3067.5.6 Troubleshooting . 3067.6 gRPC image stream interface . 3067.6.1 gRPC service definition . 3077.6.2 Image stream conversions . 3097.7 OPC UA interface . 3097.8 Time synchronization . 3097.8.1 NTP . 3097.8.2 PTP . 3097.8.3 Setting time manually . 310
8 Maintenance 311

Basler AGManual: rc_visard 3 Rev: 24.01.1Status: Jan 29, 2024

Contents

8.1 Lens cleaning . 3118.2 Camera calibration . 3118.3 Creating and restoring backups of settings . 3118.4 Updating the firmware . 3128.5 Restoring the previous firmware version . 3138.6 Rebooting the rc_visard . 3138.7 Updating the software license . 3138.8 Downloading log files . 314
9 Accessories 3159.1 Connectivity kit . 3159.2 Wiring . 3159.2.1 Ethernet connections . 3159.2.2 Power connections . 3169.2.3 Power supplies . 3169.3 Spare parts . 316
10 Troubleshooting 31710.1 LED colors . 31710.2 Hardware issues . 31710.3 Connectivity issues . 31810.4 Camera-image issues . 31810.5 Depth/Disparity, error, and confidence image issues . 31910.6 Dynamics issues . 32010.7 GigE Vision/GenICam issues . 321
11 Contact 32211.1 Support . 32211.2 Downloads . 32211.3 Address . 322
12 Appendix 32312.1 Pose formats . 32312.1.1 Rotation matrix and translation vector . 32412.1.2 ABB pose format . 32412.1.3 FANUC XYZ-WPR format . 32412.1.4 Franka Emika Pose Format . 32512.1.5 Fruitcore HORST pose format . 32712.1.6 Kawasaki XYZ-OAT format . 32712.1.7 KUKA XYZ-ABC format . 32812.1.8 Mitsubishi XYZ-ABC format . 32812.1.9 Universal Robots pose format . 32912.1.10 Yaskawa Pose Format . 330
HTTP Routing Table 332

Index 333

Basler AGManual: rc_visard 4 Rev: 24.01.1Status: Jan 29, 2024

1 Introduction

Indications in the manual

To prevent damage to the equipment and ensure the user’s safety, thismanual indicates each precautionrelated to safety with Warning. Supplementary information is provided as a Note.
Warning: Warnings in this manual indicate procedures and actions that must be observed to avoiddanger of injury to the operator/user, or damage to the equipment. Software-related warnings indi-cate procedures that must be observed to avoid malfunctions or unexpected behavior of the soft-ware.
Note: Notes are used in this manual to indicate supplementary relevant information.

1.1 Overview

The 3D sensor rc_visard is an IP54-protected , self-registering stereo-camera with on-board computingcapabilities.
The rc_visard provides real-time camera images and depth images, which can be used to compute 3Dpoint clouds. Additionally, it provides confidence and error images as quality measures for each imageacquisition. It offers an intuitive web UI (user interface) and a standardized GenICam interface, makingit compatible with all major image processing libraries.
With optionally available software modules the rc_visard provides out-of-the-box solutions for objectdetection and robotic pick-and-place applications.
The rc_visard also provides self-localization based on image and inertial data. A mobile navigation so-lution can be established with the optional on-board SLAM module.
The rc_visard is offered with two different stereo baselines: The rc_visard 65 is optimally suited formounting on robotic manipulators, whereas the rc_visard 160 can be employed as a navigation or asexternally-fixed sensor.
The rc_visard’s intuitive calibration, configuration, and use enable 3D vision for everyone.

Basler AGManual: rc_visard 5 Rev: 24.01.1Status: Jan 29, 2024

1.1. Overview

Fig. 1.1: Basler rc_visard 65 and rc_visard 160
The terms “sensor,” “rc_visard 65,” and “rc_visard 160” used throughout the manual all refer to the Basler
rc_visard family of self-registering cameras. Installation and control for all sensors are exactly the same,and all use the same mounting base.
Note: Unless specified, the information provided in this manual applies to both the rc_visard 65 and
rc_visard 160 versions of the Basler rc_visard sensor.
Note: This manual uses the metric system and mostly uses the units meter and millimeter. Unlessotherwise specified, all dimensions in technical drawings are in millimeters.

Basler AGManual: rc_visard 6 Rev: 24.01.1Status: Jan 29, 2024

1.2. Warranty

1.2 Warranty

Any changes or modifications to the hard- and software not expressly approved by Basler could void theuser’s warranty and guarantee rights.
Warning: The rc_visard utilizes complex hardware and software technology that may behave in away not intended by the user. The purchaser must design its application to ensure that any failure orthe rc_visard does not cause personal injury, property damage, or other losses.

Warning: Do not attempt to take apart, open, service, or modify the rc_visard. Doing so could presentthe risk of electric shock or other hazard. Any evidence of any attempt to open and/or modify the de-vice, including any peeling, puncturing, or removal of any of the labels, will void the Limited Warranty.

Warning: CAUTION: to comply with the European CE requirement, all cables used to connect thisdevice must be shielded and grounded. Operation with incorrect cables may result in interferencewith other devices or undesired effects of the product.

Note: This product may not be treated as household waste. By ensuring this product is disposed ofcorrectly, you will help to protect the environment. For more detailed information about the recyclingof this product, please contact your local authority, your household waste disposal service provider,or the product’s supplier.

Basler AGManual: rc_visard 7 Rev: 24.01.1Status: Jan 29, 2024

1.3. Applicable standards

1.3 Applicable standards

1.3.1 Interfaces

The rc_visard supports the following interface standards:

TheGeneric Interface for Cameras standard is the basis for plug & play handling of cameras and devices.

GigE Vision® is an interface standard for transmitting high-speed video and related control data overEthernet networks.

1.3.2 Approvals

The rc_visard has received the following approvals:

EC Declaration of Conformity

NRTL certification by TÜV Süd

Changes or modifications not expressly approved by the manufacturercould void the user’s authority to operate the equipment. This device complies withPart 15 of the FCC rules. Operation is subject to the following two conditions:
1. This device may not cause harmful interference, and
2. this device must accept any interference received, including interference that maycause undesired operation.

1.3.3 Standards

The rc_visard has been tested to be in compliance with the following standards:
• AS/NZS CISPR32 : 2015 Information technology equipment, Radio disturbance charac-teristics, Limits and methods of measurement
• CISPR 32 : 2015 Electromagnetic compatibility of multimedia equipment - Emissionrequirements
• GB 9254 : 2008 This standard is out of the accreditation scope. Information technologyequipment, Radio disturbance characteristics, Limits and methods of measurement
• EN 55032 : 2015 Electromagnetic compatibility of multimedia equipment - Emissionrequirements

Basler AGManual: rc_visard 8 Rev: 24.01.1Status: Jan 29, 2024

http://www.genicam.org/
http://www.gigevision.com

1.4. Information on disposal

• EN55024 : 2010 +A1:2015 Information technology equipment, Immunity characteristics,Limits and methods of measurement
• CISPR 24 : 2015 +A1:2015 International special committee on radio interference, Infor-mation technology equipment-Immunity characteristics-Limits and methods of mea-surement
• EN 61000-6-2 : 2005 Electromagnetic compatibility (EMC) Part 6-2:Generic standards -Immunity for industrial environments
• EN 61000-6-3 : 2007+A1:2011 Electromagnetic compatibility (EMC) - Part 6-3: Genericstandards - Emission standard for residential, commercial and light-industrial environ-ments
• Registered FCC ID: 2AVMTRCV17
• Certified for Canada according to CAN ICES-3(B)/NMB-3(B)

1.4 Information on disposal

1. Disposal of Waste Electrical & Electronic Equipment

This symbol on the product(s) and / or accompanying documents means that used electrical andelectronic products should not be mixed with general household waste. For proper treatment,recovery and recycling, please contact your supplier or themanufacturer. Disposing of this productcorrectly will help save valuable resources and prevent any potential negative effects on humanhealth and the environment, which could otherwise arise from inappropriate waste handling.
2. Removal of batteries

If the products contain batteries and accumulators that can be removed from the product withoutdestruction, these must be removed before disposal and disposed of separately as batteries.
The following batteries or accumulators are contained in the rc_visard: None

3. Options for returning old equipment

Owners of old devices can return them to the manufacturer to ensure proper disposal.
Please contact support (Section 11) about returning the device for disposal.

4. Data protection

End users of Electrical & Electronic Equipment are responsible for deleting personal data on thewaste equipment to be disposed of.
5. WEEE registration number

Basler is registered under the registration number DE 83888045 at the stiftung elektro-altgeräteregister, Nordostpark 72, 90411 Nuremberg, Germany, as a producer of electrical and/or electronicequipment.

Basler AGManual: rc_visard 9 Rev: 24.01.1Status: Jan 29, 2024

1.4. Information on disposal

6. Collection and recovery quotas

According to the WEEE Directive, EU member states are obliged to collect data on waste elec-trical and electronic equipment and to transmit this data to the European Commission. Furtherinformation can be found on the German Ministry for the Environment website.
Information on Disposal outside the European Union

This symbol is valid only in the European Union. If you wish to discard this product please contact yourlocal authorities or dealer and ask for the correct method of disposal.

Basler AGManual: rc_visard 10 Rev: 24.01.1Status: Jan 29, 2024

1.5. Glossary

1.5 Glossary

DHCP The Dynamic Host Configuration Protocol (DHCP) is used to automatically assign an IP addressto a network device. SomeDHCP servers only accept known devices. In this case, an administratorneeds to configure the DHCP server with the fixed MAC address of a device.
DNS

mDNS The Domain Name Server (DNS) manages the host names and IP addresses of all network de-vices. It is responsible for resolving the host name into the IP address for communication witha device. A DNS can be configured to get this information automatically when a device appearson a network or manually by an administrator. In contrast, multicast DNS (mDNS) works withouta central server by querying all devices on a local network each time a host name needs to beresolved. mDNS is available by default on Linux and Mac operating systems and is used when‘.local’ is appended to a host name.
DOF The Degrees Of Freedom (DOF) are the number of independent parameters for translation androtation. In 3D space, 6DOF (i.e. three for translation and three rotation) are sufficient to describean arbitrary position and orientation.
GenICam GenICam is a generic standard interface for cameras. It serves as a unified interface aroundother standards such as GigE Vision, Camera Link, USB, etc. See http://genicam.org for more in-formation.
GigE Gigabit Ethernet (GigE) is a networking technology for transmitting data at one gigabit per second.
GigE Vision GigE Vision® is a standard for configuring cameras and transmitting images over a GigEnetwork link. See http://gigevision.com for more information.
IMU An Inertial Measurement Unit (IMU) consists of three accelerometers and three gyroscopes thatmeasure the linear accelerations and the turn rates in all three dimensions.
INS An Inertial Navigation System (INS) is a 3Dmeasurement systemwhich uses inertialmeasurements(accelerations and turn rates) to compute position and orientation information. We refer to ourcombination of stereo vision and inertial navigation as stereo INS.
IP

IP address The Internet Protocol (IP) is a standard for sending data between devices in a computernetwork. Every device requires an IP address, whichmust be unique in the network. The IP addresscan be configured by DHCP, Link-Local, or manually.
Link-Local Link-Local is a technology where network devices associate themselves with an IP addressfrom the 169.254.0.0/16 IP range and check if it is unique in the local network. Link-Local can beused if DHCP is unavailable and manual IP configuration is not or cannot be done. Link-Local isespecially useful for connecting a network device directly to a host computer. By default, Windows10 reverts automatically to Link-Local if DHCP is unavailable. Under Linux, Link-Local must beenabled manually in the network manager.
MAC address The Media Access Control (MAC) address is a unique, persistent address for networkingdevices. It is also known as the hardware address of a device. In contrast to the IP address, theMAC address is (normally) permanently given to a device and does not change.
NTP The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network.Basically a client requests the current time from a server, and uses it to set its own clock.
PTP The Precision Time Protocol (PTP, also known as IEEE1588) is a protocol which enables moreprecise and robust clock synchronization than with NTP.
SDK A Software Development Kit (SDK) is a collection of software development tools or a collection ofsoftware components.
SGM SGM stands for Semi-Global Matching and is a state-of-the-art stereo matching algorithm whichoffers brief run times and a great accuracy, especially at object borders, fine structures, and inweakly textured areas.

Basler AGManual: rc_visard 11 Rev: 24.01.1Status: Jan 29, 2024

http://genicam.org
http://gigevision.com

1.5. Glossary

SLAM SLAM stands for Simultaneous Localization and Mapping and describes the process of creatinga map of an unknown environment and simultaneously updating the sensor pose within the map.
TCP The Tool Center Point (TCP) is the position of the tool at the end effector of a robot. The positionand orientation of the TCP determines the position and orientation of the tool in 3D space.
UDP The User Datagram Protocol (UDP) is the minimal message-oriented transport layer of the Inter-net Protocol (IP) family. It uses a simple connectionless transmission model with a minimum ofprotocol mechanism such as integrity verification (via checksum). The rc_visard uses UDP forpublishing its estimated dynamical states (Section 6.2.1.2) via the rc_dynamics interface (Section7.4). To receive this data, applications may use datagram sockets to bind to the endpoint of thedata transmission consisting of a combination of an IP address and a service port number suchas 192.168.0.100:49500, which is typically referred to as a destination of an rc_dynamics datastream in this documentation.
URI

URL A Uniform Resource Identifier (URI) is a string of characters identifying resources of the rc_visard’sREST-API. An example of such a URI is /nodes/rc_camera/parameters/fps, which points to the
fps run-time parameter of the stereo camera module.
A Uniform Resource Locator (URL) additionally specifies the full network location and proto-col, i.e., an exemplary URL to locate the above resource would be https://<ip>/api/v1/nodes/
rc_camera/parameters/fps where <ip> refers to the rc_visard’s IP address.

XYZ+quaternion Format to represent a pose. See Rotation matrix and translation vector (Section 12.1.1)for its definition.
XYZABC Format to represent a pose. See KUKA XYZ-ABC format (Section 12.1.7) for its definition.

Basler AGManual: rc_visard 12 Rev: 24.01.1Status: Jan 29, 2024

2 Safety

Warning: The operator must have read and understood all of the instructions in this manual beforehandling the rc_visard product.

Note: The term “operator” refers to anyone responsible for any of the following tasks performed inconjunction with rc_visard:• Installation• Maintenance• Inspection• Calibration• Programming• Decommissioning
Thismanual explains the rc_visard’s various components and general operations regarding the product’swhole life-cycle, from installation through operation to decommissioning.
The drawings and photos in this documentation are representative examples; differences may existbetween them and the delivered product.

2.1 General warnings

Note: Any use of the rc_visard in noncompliance with these warnings is inappropriate andmay causeinjury or damage as well as void the warranty.

Warning:

• The rc_visard needs to be properly mounted before use.
• All cable sets need to be secured to the rc_visard and the mount.
• Cords must be at most 30 m long.
• An appropriate DC power source must supply power to the rc_visard.
• Each rc_visard must be connected to a separate power supply.
• The rc_visard’s housing must be grounded.
• The rc_visard’s and any related equipment’s safety guidelines must always be satisfied.
• The rc_visard does not fall under the purview of the machinery, low voltage, or medical direc-tives.

Basler AGManual: rc_visard 13 Rev: 24.01.1Status: Jan 29, 2024

2.2. Intended use

Risk assessment and final application:

The rc_visard may be used on a robot. Robot, rc_visard, and any other equipment used in the final appli-cation must be evaluated with a risk assessment. The system integrator’s duty is to ensure respect forall local safety measures and regulations. Depending on the application, there may be risks that needadditional protection/safety measures.

2.2 Intended use

The rc_visard is intended for data acquisition (e.g., images, egomotion and disparity images) in station-ary and mobile robotic applications. The rc_visard is intended for installation on a robot, automatedmachinery, mobile platform, or stationary equipment. It can also be used for data acquisition in otherapplications.
Warning: The rc_visard is NOT intended for safety critical applications.

The GigE Vision® industry standard used by the rc_visard does not support authentication and encryp-tion. All data from and to the device is transmitted without authentication and encryption and could bemonitored or manipulated by a third party. It is the operator’s responsibility to connect the rc_visard onlyto a secured internal network.
Warning: The rc_visard must be connected to secured internal networks.

The rc_visard may be used only within the scope of its technical specification. Any other use of theproduct is deemed unintended use. Basler will not be liable for any damages resulting from any improperor unintended use.
Warning: Always comply with local and/or national laws, regulations and directives on automationsafety and general machine safety.

Basler AGManual: rc_visard 14 Rev: 24.01.1Status: Jan 29, 2024

3 Hardware specification

Note: The following hardware specifications are provided here as a general reference; differenceswith the product may exist.

3.1 Scope of delivery

Standard delivery for an rc_visard includes the rc_visard sensor and a quickstart guide only. The fullmanual is available in digital form and is always installed on the sensor, accessible through the Web
GUI (Section 7.1).
Note: The following items are not included in the delivery unless otherwise specified:• Couplings, adapters, mounts• Power supply unit, cabling, and fuses• Network cablingPlease refer to Accessories (Section 9) for suggested third-party cable vendors.

A connectivity kit can be purchased for the rc_visard. It contains an M12 to RJ45 network cable, 24 Vpower supply, and a DC plug to M12 power adapter. Please refer to Accessories (Section 9) for details.
Note: The connectivity kit is intended only for initial setup, not for permanent installation in industrialenvironment.

The following picture shows the important parts of the rc_visard which are referenced later in the docu-mentation.

Mounting interface Power
connector

Ethernet
connector

LED

Cooling fins

Left cameraRight camera

Fig. 3.1: Parts description

Basler AGManual: rc_visard 15 Rev: 24.01.1Status: Jan 29, 2024

3.2. Technical specification

3.2 Technical specification

The common technical specifications for the rc_visard variants are given in Table 3.1. The rc_visard 160is available with two different types of lenses: 4 mm and 6 mm focal length. The rc_visard 65 is onlyavailable with 4 mm lenses.
Table 3.1: Common technical specifications for both rc_visardbaselines

rc_visard 65 / rc_visard 160Image resolution 1280 x 960 pixel, color or monochromeField of view
4 mm lens: Horizontal: 61°, Vertical: 48°
6 mm lens: Horizontal: 43°, Vertical: 33°

IR Cutoff 650 nmDepth image
1280 x 960 pixel (Full) @ 1 Hz (with StereoPluslicense)
640 x 480 pixel (High) @ 3 Hz
320 x 240 pixel (Medium) @ 15 Hz
214 x 160 pixel (Low) @ 25 Hz

Egomotion 200 Hz, low latencyComputing unit Nvidia Tegra K1Power supply 18 V to 30 VCooling Passive
The rc_visard 65 and rc_visard 160 differ in their baselines, which affects depth range and resolution aswell as the sensors’ size and weight.

Table 3.2: Differing technical specifications for the rc_visard vari-ants
rc_visard 65 rc_visard 160Baseline 65 mm 160 mmDepth range 0.2 m to infinity 0.5 m to infinitySize (W x H x L) 135 mm x 75 mm x 96mm 230 mm x 75 mm x 84mmMass 0.68 kg 0.84 kg

The combination of baselines and lens types leads to different resolutions and accuracies.

Basler AGManual: rc_visard 16 Rev: 24.01.1Status: Jan 29, 2024

3.2. Technical specification

Table 3.3: Resolution and accuracy of the rc_visard variants in mil-limeters with full resolution stereo matching and random dot pro-jection on non-reflective and non-transparent objects.
distance (mm) rc_visard 65-4 rc_visard 160-4 rc_visard 160-6lateral resolution(mm) 200
500
1000
2000
3000

0.2
0.5
0.9
1.9
2.8

-
0.5
0.9
1.9
2.8

-
0.3
0.6
1.3
1.9

depth resolution(mm) 200
500
1000
2000
3000

0.04
0.2
0.9
3.6
8.0

-
0.1
0.4
1.5
3.3

-
0.06
0.3
1.0
2.2

Average depth ac-curacy (mm) 200
500
1000
2000
3000

0.2
0.9
3.6
14.2
32.1

-
0.4
1.5
5.8
13.0

-
0.3
1.0
3.9
8.8

The rc_visard can be equipped with on-board software modules for additional features. These softwaremodules can be ordered from the Basler and require a license update.

Basler AGManual: rc_visard 17 Rev: 24.01.1Status: Jan 29, 2024

3.2. Technical specification

135

75

65

32.5

37
.5

(96)
74.5

21.5

Fig. 3.2: Overall dimensions of the rc_visard 65

230

75
37
.5

80

160

62.5
21.5

(84)

Fig. 3.3: Overall dimensions of the rc_visard 160

Basler AGManual: rc_visard 18 Rev: 24.01.1Status: Jan 29, 2024

3.3. Environmental and operating conditions

3.3 Environmental and operating conditions

The rc_visard is designed for industrial applications. Always respect the storage, transport, and operat-ing environmental conditions outlined in Table 3.4.
Table 3.4: Environmental conditions

rc_visardStorage/Transport temperature -25 °C to 70 °COperating temperature 0 °C to 50 °CRelative humidity (non condensing) 20 % to 80 %Vibration 5 gShock 50 gProtection class IP54Others • Free from corrosive liquids or gases• Free from explosive liquids or gases• Free from powerful electromagnetic interfer-ence

The rc_visard is designed for an operating temperature (surrounding environment) of 0 °C to 50 °C andrelies on convective (passive) cooling. Unobstructed airflow, especially around the cooling fins, needs tobe ensured during use. The rc_visard should only be mounted using the provided mechanical mountinginterface, and all parts of the housing must remain uncovered. A free space of at least 10 cm extendingin all directions from the housing, and sufficient air exchange with the environment is required to ensureadequate cooling. Cooling fins must be free of dirt and other contamination.
The housing temperature depends on the processing load, sensor orientation, and surrounding environ-mental temperatures. When the sensor’s exposed housing surfaces exceed 60°C, the LED at the frontwill turn from green to red.
Warning: For hand-guided applications, a heat-insulated handle should be attached to the sensor toreduce the risk of burn injuries due to skin exposure to surface temperatures exceeding 60°C.

3.4 Power-supply specifications

The rc_visard needs to be supplied by a DC voltage source. The rc_visard’s standard package doesn’tinclude a DC power supply. The power supply contained in the connectivity kit may be used for initialsetup. For permanent installation, it is the customer’s responsibility to provide suitable DC power. Each
rc_visard must be connected to a separate power supply. Connection to domestic grid power is onlyallowed through a power supply certified as EN55011 Class B.

Table 3.5: Absolute maximum ratings for power supply
Min Nominal MaxSupply voltage 18.0 V 24 V 30.0 VMax power consumption 25 WOvercurrent protection Supply must be fuse-protected to a maximum of 2 AEMC compliance see Standards (Section 1.3.3)

Warning: Exceeding maximum power rating values may lead to damage of the rc_visard, powersupply, and connected equipment.

Basler AGManual: rc_visard 19 Rev: 24.01.1Status: Jan 29, 2024

3.5. Wiring

Warning: A separate power supply must power each rc_visard.

Warning: Connection to domestic grid power is allowed through a power supply certified as EN55011Class B only.

3.5 Wiring

Cables are not provided with the rc_visard standard package. It is the customer’s responsibility to obtainthe proper cabling. Accessories (Section 9) provides an overview of suggested components.
Warning: Proper cable management is mandatory. Cabling must always be secured to the rc_visardmount with a strain-relief clamp so that no forces due to cable movements are exerted on the
rc_visard’s M12 connectors. Enough slack needs to be provided to allow for full range of movementof the rc_visard without straining the cable. The cable’s minimum bend radius needs to be observed.

The rc_visard provides an industrial 8-pin A-coded M12 socket connector for Ethernet connectivity andan 8-pin A-coded M12 plug connector for power and GPIO connectivity. Both connectors are locatedat the back. Their locations (distance from center lines) are identical for both baseline variants. Thelocation of both connectors on the rc_visard is shown in Fig. 3.4.
45.9

23
.4

23
.4

Ethernet
connector

Power
connector

Fig. 3.4: Locations of the electrical connections for the rc_visard, with Ethernet on top and power on thebottom
Connectors are rotated so that standard 90° angled connectors will exit horizontally, away from thecamera (away from the cooling fins).

Basler AGManual: rc_visard 20 Rev: 24.01.1Status: Jan 29, 2024

3.5. Wiring

1

2

3
45

6

7

8

Ethernet
M12 8-pin socket connector
A-coded, view onto camera

Power/GPIO
M12 8-pin plug connector
A-coded, view onto camera

1
2

3
45

6

7
8

Fig. 3.5: Pin positions for power and Ethernet connector
Pin assignments for the Ethernet connector are given in Fig. 3.6.

M12 RJ45

6
4
5
8
1
7
2
3

1 WH-OG
2 OG
3 WH-GN
6 GN
5 WH-BU
4 BU
7 WH-BN
8 BN

Fig. 3.6: Pin assignments for M12 to Ethernet cabling
Pin assignments for the power connector are given in Table 3.6.

Table 3.6: Pin assignments for the power connector
Pin Assignment1 GPIO In 22 Power3 GPIO In 14 GPIO Gnd5 GPIO Vcc6 GPIO Out 1 (image expo-sure)7 Gnd8 GPIO Out 2

GPIOs are decoupled by photocoupler. GPIO Out 1 by default provides an exposure sync signal with alogic high level for the duration of the image exposure. All GPIOs can be controlled via the IOControlmodule (IO and Projector Control, Section 6.4.4). Pins of unsused GPIOs should be left floating.
Warning: It is especially important that during the boot phase GPIO In 1 is left floating or remainslow. The rc_visard will not boot if the pin is high during boot time.

Basler AGManual: rc_visard 21 Rev: 24.01.1Status: Jan 29, 2024

3.6. Mechanical interface

GPIO circuitry and specifications are shown in Fig. 3.7. Themaximum rated voltage forGPIO In andGPIO
Vcc is 30 V.

2k

GPIO In:
 Uin_low = 0 VDC
 Uin_high = 11VDC to 30 VDC
 Iin = 5mA to 13 mA

GPIO Out:
 Uext = 5VDC to 30 VDC
 Iout = max 50 mA

2k

180

180

GPIO_GND

GPIO_In2

GPIO_In1

GPIO_Power_Vcc

GPIO_Out1

GPIO_Out2

Fig. 3.7: GPIO circuitry and specifications – do not connect signals higher than 30 V

Warning: Do not connect signals with voltages higher than 30 V to the rc_visard.

3.6 Mechanical interface

The rc_visard 65 and rc_visard 160 offer identical mounting-point setups at the bottom.

Basler AGManual: rc_visard 22 Rev: 24.01.1Status: Jan 29, 2024

3.7. Coordinate frames

50

5
5

5
28

4
+0.05

4+0.05

28

UNC 1/4"-20,
thread depth = 5

Optical axis

Z

X

3x M4 mounting threads
for dynamic applications

3xM4, thread

 depth = 6

Fig. 3.8: Mounting-point for connecting the rc_visard to robots or other mountings
For troubleshooting and static applications, the sensor may be mounted using the standardized tripodthread (UNC 1/4”-20) indicated at the coordinate-frame origin. For dynamic applications such asmount-ing on a robotic arm, the sensor must be mounted with three M4 (metric standard) 8.8 machine screwstightened to 2.5 Nm and secured with a medium-strength threadlocking adhesive such as Loctite 243.Maximum thread depth is 6 mm. The two 4 mm diameter holes may be used for positioning pins (ISO2338 4 m6) to ensure precise repositioning of the sensor.
Warning: For dynamic applications, the rc_visard must be mounted with three M4 8.8 machinescrews tightened to 2.5 Nm torque and secured with threadlocking adhesive. Do not use high-strength bolts. The engaged thread depth must be at least 5 mm.

3.7 Coordinate frames

The rc_visard’s coordinate-frame origin is defined as the exit pupil of the left camera lens. This frame iscalled sensor coordinate frame or camera coordinate frame. An approximate location for the rc_visardis shown in the next image.
The mounting-point frame for the rc_visard is defined to be at the bottom, centered in the tripod thread,with orientation identical to that of the sensor’s coordinate frame.
Fig. 3.9 and Fig. 3.10 show approximate offsets.

Basler AGManual: rc_visard 23 Rev: 24.01.1Status: Jan 29, 2024

3.7. Coordinate frames

135

75

65

21.5

(96)
74.5

28

37
.5

32.5
x

y

x

y

z

y

z

y

~31.5

Fig. 3.9: Approximate location of sensor/camera coordinate frame (inside left lens) and mounting-pointframe (at tripod thread) for the rc_visard 65

230

160

80
75

37
.5

21.5 28

62.5
(84)

~31.5

x

y

x

y

z

y

z

y

Fig. 3.10: Approximate locations of sensor/camera coordinate frame (inside left lens) and mounting-point frame (at tripod thread) for the rc_visard 160

Note: The correct offset between the sensor/camera frame and a robot coordinate frame can becalibrated through the hand-eye-calibration procedure (Section 6.4.1).

Basler AGManual: rc_visard 24 Rev: 24.01.1Status: Jan 29, 2024

4 Installation

Warning: The instructions on Safety (Section 2) related to the rc_visardmust be read and understoodprior to installation.
The rc_visard offers a Gigabit Ethernet interface for connecting the device to a computer network. Allcommunications to and from the device are performed via this interface. The rc_visard has an on-boardcomputing resource that requires booting time after powering up the device.

4.1 Software license

Every rc_visard device ships with a pre-installed license file for licensing and protection of the installedsoftware packages. The license is bound to that specific rc_visard device and cannot be used or trans-ferred to other devices.
The functionality of the rc_visard can be enhanced anytime by upgrading the license (Section 8.7), e.g.,for optionally available software modules.
Note: The rc_visard requires to be rebooted whenever the installed licenses have changed.
Note: The license status can be retrieved via the rc_visard’s various interfaces such as the System→
Firmware & License page of the Web GUI (Section 7.1).

4.2 Power up

Note: Always fully connect and tighten the M12 power connector on the rc_visard before turning onthe power supply.
After connecting the rc_visard to the power, the LED on the front of the device should immediately illu-minate. During the device’s boot process, the LED will change color and will eventually turn green. Thissignals that all processes are up and running.
If the network is not plugged in or the network is not properly configured, then the LEDwill flash red every5 seconds. In this case, the device’s network configuration should be verified. See LED colors (Section10.1) for more information on the LED color codes.

Basler AGManual: rc_visard 25 Rev: 24.01.1Status: Jan 29, 2024

4.3. Discovery of rc_visard devices

4.3 Discovery of rc_visard devices

Basler rc_visard devices that are powered up and connected to the local network or directly to a computercan be found using the standard GigE Vision® discovery mechanism.
Basler offers the open-source tool rcdiscover-gui, which is available for Windows and Linux. The tool’sWindows version consists of a single executable forWindows 7 andWindows 10, which can be executedwithout installation. For Linux an installation package is available for Ubuntu.
At startup, all available GigE Vision® devices – including rc_visard devices – are listed with their names,serial numbers, current IP addresses, and unique MAC addresses. The discovery tool finds all devicesreachable by global broadcasts. Misconfigured devices that are located in different subnets than theapplication host may also be listed. A tickmark in the discovery tool indicates whether devices areactually reachable via a web browser.

Fig. 4.1: Label on the rc_visard indicating model, serial number and MAC address

Fig. 4.2: rcdiscover-gui tool for finding connected GigE Vision® devices
After successful discovery, a double click on the device rowopens theWebGUI (Section 7.1) of the devicein the operating system’s default web browser. Google Chrome or Mozilla Firefox are recommended asweb browser.

4.3.1 Resetting configuration

A misconfigured device can be reset by using the Reset rc_visard button in the discovery tool. The re-set mechanism is only available for two minutes after device startup. Thus, the rc_visard may requirerebooting before being able to reset the device.

Basler AGManual: rc_visard 26 Rev: 24.01.1Status: Jan 29, 2024

4.4. Network configuration

Fig. 4.3: Reset dialog of the rcdiscover-gui tool
If the discovery tool still successfully detects the the misconfigured rc_visard, then the latter can beselected from the rc-visard drop-down menu. Otherwise, the rc_visard’s MAC address, which is printedon the device label, can be entered manually into the designated fields.
One of four options can be chosen after entering the MAC address:

• Reset Parameters: Reset all rc_visard parameters, such as frame rate, that are configurable viaWeb
GUI (Section 7.1).

• Reset Network: Reset network settings and user-defined name.
• Reset All: Reset the rc_visard parameters as well as network settings and user-defined name.
• SwitchPartitions: Allows a rollback to be performedas described inRestoring the previous firmware
version (Section 8.5).

A white status LED followed by a device reboot indicates a successful reset. If no reaction is noticeable,the two minutes time slot may have elapsed, requiring another reboot.
Note: The reset mechanism is only available for the first two minutes after startup.

4.4 Network configuration

The rc_visard requires an Internet Protocol (IP) address for communication with other network de-vices. The IP address must be unique in the local network, and can be set either manually via a user-configurable persistent IP address, or automatically via DHCP. If none of these IP configurationmethodsapply, the rc_visard falls back to a Link-Local IP address.
Following the GigE Vision® standard, the priority of IP configuration methods on the rc_visard is

1. Persistent IP (if enabled)
2. DHCP (if enabled)
3. Link-Local

Basler AGManual: rc_visard 27 Rev: 24.01.1Status: Jan 29, 2024

4.4. Network configuration

Yes

Yes

Yes
Use Persistent IP

Use DHCP

Successful?

Successful?

No

No
No

Start

End

Yes

No

Persistent IP
enabled?

DHCP enabled?

Use Link-Local
Address

Fig. 4.4: rc_visard’s IP configuration method selection flowchart
Options for changing the rc_visard’s network settings and IP configuration are:

• the System → Network page of the rc_visard’s Web GUI – if it is reachable in the local networkalready, see Web GUI (Section 7.1)
• any configuration tool compatible with GigE Vision®2.0, or Basler’s command-line tool gc_config.Typically, these tools scan for all available GigE Vision® devices on the network. All rc_visarddevices can be uniquely identified by their serial number and MAC address, which are both printedon the device.
• temporarily changing or completely resetting the rc_visard’s network configuration via Basler’s
rcdiscover-gui tool, see Discovery of rc_visard devices (Section 4.3)

4.4.1 Host name

The rc_visard’s host name is based on its serial number, which is printed on the device, and is definedas rc-visard-<serial number>.

4.4.2 Automatic configuration (factory default)

TheDynamic Host Configuration Protocol (DHCP) is preferred for setting an IP address. If DHCP is activeon the rc_visard, which is the factory default, the device tries to contact a DHCP server at startup andevery time the network cable is being plugged in. If a DHCP server is available on the network, the IPaddress is automatically configured.
In some networks, the DHCP server is configured so that it only accepts known devices. In this case,the Media Access Control address (MAC address), which is printed on the device label, needs to beconfigured in the DHCP server. At the same time, the rc_visard’s host name can also be set in the DomainName Server (DNS). Both MAC address and host name should be sent to the network administrator forconfiguration.
If the rc_visard cannot contact a DHCP server within about 15 seconds after startup, or after plugging inthe network cable, it assigns itself a unique IP address. This process is called Link-Local. This option isespecially useful for connecting the rc_visard directly to a computer. The computer must be configured
Basler AGManual: rc_visard 28 Rev: 24.01.1Status: Jan 29, 2024

4.4. Network configuration

for Link-Local as well. Link-Localmight already be configured as a standard fallback option, as it is underWindows 10. Other operating systems such as Linux require Link-Local to be explicitly configured in theirnetwork managers.

4.4.3 Manual configuration

Specifying a persistent, i.e. static IP address manually might be useful in some cases. This addressis stored on the rc_visard to be used on device startup or network reconnection. Please make sure theselected IP address, subnet mask and gateway will not cause any conflicts on the network.
Warning: The IP address must be unique within the local network and within the local network’srange of valid addresses. Furthermore, the subnet mask must match the local network; otherwise,the rc_visard may become inaccessible. This can be avoided by using automatic configuration asexplained in Automatic configuration (factory default) (Section 4.4.2).

If this IP address cannot be assigned, e.g. because it is already used by another device in the network,IP configuration will fall back to automatic configuration via DHCP (if enabled) or a Link-Local address.

Basler AGManual: rc_visard 29 Rev: 24.01.1Status: Jan 29, 2024

5 Measurement principles

The rc_visard is a self-registering 3D camera. It provides rectified camera, disparity, confidence, and errorimages, which enable the viewed scene’s depth values along with their uncertainties to be computed.Furthermore, the motion of visual features in the images is combined with acceleration and turn-ratemeasurements at a high rate, which enables the sensor to provide real-time estimates of its currentpose, velocity, and acceleration.
In the following, the underlying measurement principles are explained in more detail.

5.1 Stereo vision

In stereo vision, 3D information about a scene can be extracted by comparing two images taken fromdifferent viewpoints. The main idea behind using a camera pair for measuring depth is the fact thatobject points appear at different positions in the two camera images depending on their distance fromthe camera pair. Very distant object points appear at approximately the same position in both images,whereas very close object points occupy different positions in the left and right camera image. Theobject points’ displacement in the two images is called disparity. The larger the disparity, the closer theobject is to the camera. The principle is illustrated in Fig. 5.1.

Image plane

Left camera Right camera

Left image

Right image

d1 d2

Fig. 5.1: Sketch of the stereo-vision principle: Themore distant object (black) exhibits a smaller disparity
𝑑2 than that of the close object (gray), 𝑑1.
Stereo vision is a formof passive sensing,meaning that it emits neither light nor other signals tomeasuredistances, but uses only light that the environment emits or reflects. Thus, the Basler products utilizingthis sensing principle can work indoors and outdoors and multiple devices can work together withoutinterferences.
To compute the 3D information, the stereomatching algorithmmust be able to find corresponding objectpoints in the left and right camera images. For this, the algorithm requires texture, meaning changes in
Basler AGManual: rc_visard 30 Rev: 24.01.1Status: Jan 29, 2024

5.2. Sensor dynamics

image intensity values due to patterns or the objects’ surface structure, in the images. Stereo matchingis not possible for completely untextured regions, such as a flat white wall without any visible surfacestructure. The stereo matching method used by the rc_visard is SGM (Semi-Global Matching), whichprovides the best trade-off between runtime and accuracy, even for fine structures.
The following software modules are required to compute 3D information:

• Camera: This module is responsible for capturing synchronized image pairs and transformingthem into images approaching those taken by an ideal camera (rectification).
• Stereo matching: This module computes disparities for the rectified stereo image pair using
SGM (Section 6.1.2).

For stereo matching, the position and orientation of the left and right cameras relative to each otherhas to be known with very high accuracy. This is achieved by calibration. The rc_visard’s cameras arepre-calibrated during production. However, if the rc_visard has been decalibrated, during transport forexample, then the user has to recalibrate the stereo camera:
• Camera calibration: This module enables the user to recalibrate the rc_visard’s stereo cam-era (Section 6.4.3).

5.2 Sensor dynamics

In addition to providing 3D information about the scene, the rc_visard can also estimate its egomotion or
dynamic state in real time. This comprises its current pose, i.e., its position and orientation relative to areference coordinate system or reference frame, as well as its velocity and acceleration. Measurementsfrom stereo visual odometry (SVO) and the integrated Inertial Measurement Unit (IMU) are fused tocompute this information. This combination is called a Visual Inertial Navigation System (VINS).
Visual odometry observes the motion of characteristic points in the camera images to estimate thecamera motion. Object points are projected on different pixels in the camera image depending on thecamera’s viewing position. Each point’s 3D coordinates can also be computed using stereo matchingbetween the point positions in the left and right camera images. Thus, for two different viewing positionsA and B, two sets of corresponding 3D points are computed. Assuming a static environment, the motionthat transforms one set of points into the other is the camera’s motion. The principle is illustrated for asimplified 2D case in Fig. 5.2.

View A

View B

Pose A
Pose B

Observed motion

3D positions
view A

3D positions
view B

Computed camera
motion

Fig. 5.2: Simplified sketch of the stereo visual odometry principle for 2D motions: Camera motion iscomputed from the observed motion of characteristic image points.

Basler AGManual: rc_visard 31 Rev: 24.01.1Status: Jan 29, 2024

5.2. Sensor dynamics

Since visual odometry relies on image-data quality, motion estimates deteriorate when the images areblurred or are poorly illuminated. Furthermore, visual odometry’s frame rate is too low for control appli-cations. That’s why the rc_visard has an integrated Inertial Measurement Unit (IMU), whichmeasures theaccelerations and angular velocities that occur when the rc_visardmoves. It alsomeasures accelerationdue to gravity, which gives global orientation in the vertical direction. Further, IMU measurements havea high rate of 200 Hz. The rc_visard’s linear velocity, position, and orientation can be computed by inte-grating the IMU measurements. However, the integration results suffer from increasing drift over time.The rc_visard thus fuses accurate, but low-frequency and sometimes volatile visual odometry measure-mentswith reliable high-rate IMUmeasurements to provide an accurate, robust, high-frequency estimateof the rc_visard’s current position, orientation, velocity, and acceleration, which can be used in a controlloop.
In addition to the stereo cameramodule and the calibrationmodule, pose-estimate computations requirethe following rc_visard software modules:

• Sensor dynamics: This module handles starting, stopping, and streaming of the estimates for theindividual modules (Section 6.2.1).
– Visual odometry: Thismodule computes amotion estimate from the camera images (Section6.2.2).
– Stereo INS: This module fuses the motion estimates from visual odometry with the mea-surements from the integrated IMU to provide real-time pose estimates at a high fre-quency (Section 6.2.3).
– SLAM: This module is optionally available for the rc_visard and creates an internal map of theenvironment, which is used to correct pose errors (Section 6.2.4).

Basler AGManual: rc_visard 32 Rev: 24.01.1Status: Jan 29, 2024

6 Software modules

The rc_visard comes with several on-board software modules, each of which corresponds to a certainfunctionality and can be interfaced via its respective node in the REST-API interface (Section 7.3).
The rc_visard’s software modules can be divided into

• 3D camera modules (Section 6.1) which acquire image pairs and compute 3D depth informationsuch as disparity, error, and confidence images, and are also accessible via the rc_visard’s
GigE Vision/GenICam interface,

• Navigation modules (Section 6.2) which provide estimates of rc_visard’s current pose, velocity,and acceleration,
• Detection modules (Section 6.3) which provide a variety of detection functionalities, such asgrasp point computation and object detection,
• Configuration modules (Section 6.4) which enable the user to perform calibrations and configurethe rc_visard for specific applications.
• Database modules (Section 6.5) which enable the user to configure global data available to allother modules, such as load carriers, regions of interest and grippers.

6.1 3D camera modules

The rc_visard’s 3D camera software consists of the following modules:
• Camera (rc_camera, Section 6.1.1) acquires image pairs and performs planar rectification for us-ing the camera as a measurement device. Images are provided both for further internal pro-cessing by other modules and for external use as GenICam image streams.
• Stereo matching (rc_stereomatching, Section 6.1.2) uses the rectified stereo image pairs tocompute 3D depth information such as disparity, error, and confidence images. These areprovided as GenICam streams, too.

The Camera and the Stereo matching modules, which acquire image pairs and compute 3D depth in-formation such as disparity, error, and confidence images, are also accessible via the rc_visard’s GigE
Vision/GenICam interface.

6.1.1 Camera

The camera module is a base module which is available on every rc_visard and is responsible for imageacquisition and rectification. It provides various parameters, e.g. to control exposure and frame rate.
6.1.1.1 Rectification

To simplify image processing, the camera module rectifies all camera images based on the cameracalibration. This means that lens distortion is removed and the principal point is located exactly in themiddle of the image.
Basler AGManual: rc_visard 33 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

The model of a rectified camera is described with just one value, which is the focal length. The rc_visardreports a focal length factor via its various interfaces. It relates to the image width for supporting differ-ent image resolutions. The focal length 𝑓 in pixels can be easily obtained by multiplying the focal lengthfactor by the image width in pixels.
In case of a stereo camera, rectification also aligns images such that an object point is always projectedonto the same image row in both images. The cameras’ optical axes become exactly parallel.
6.1.1.2 Viewing and downloading images

The rc_visard provides the time-stamped, rectified images over the GenICam interface (see Provided
image streams, Section 7.2.6). Live streams of the images are provided with reduced quality in the Web
GUI (Section 7.1).
The Web GUI also provides the possibility to download a snapshot of the current scene as a .tar.gz fileas described in Downloading camera images (Section 7.1.4).
6.1.1.3 Parameters

The camera software module is called rc_camera and is represented by the Camera page in the Web
GUI (Section 7.1). The user can change the camera parameters there, or directly via the REST-API (REST-
API interface, Section 7.3) or GigE Vision (GigE Vision 2.0/GenICam image interface, Section 7.2).
Note: Camera parameters cannot be changed via the Web GUI or REST-API if rc_visard is used viaGigE Vision.

Parameter overview

This module offers the following run-time parameters:

Basler AGManual: rc_visard 34 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

Table 6.1: The rc_camera module’s run-time parameters
Name Type Min Max Default Description
exp_auto bool false true true Switching between auto andmanual exposure (deprecated,please use exp_controlinstead)
exp_auto_average_max float64 0.0 1.0 0.75 Maximum average intensity inAuto exposure mode
exp_auto_average_min float64 0.0 1.0 0.25 Minimum average intensity inAuto exposure mode
exp_auto_mode string - - Normal Auto-exposure mode:[Normal, Out1High,AdaptiveOut1]
exp_control string - - Auto Exposure control mode:[Manual, Auto, HDR]
exp_height int32 0 959 0 Height of auto exposureregion. 0 for whole image.
exp_max float64 6.6e-05 0.018 0.018 Maximum exposure time inseconds in Auto exposuremode
exp_offset_x int32 0 1279 0 First column of auto exposureregion
exp_offset_y int32 0 959 0 First row of auto exposureregion
exp_value float64 6.6e-05 0.018 0.005 Exposure time in seconds inManual exposure mode
exp_width int32 0 1279 0 Width of auto exposureregion. 0 for whole image.
fps float64 1.0 25.0 25.0 Frames per second in Hertz
gain_value float64 0.0 18.0 0.0 Gain value in decibel if not inAuto exposure mode
gamma float64 0.1 10.0 1.0 Gamma factor
wb_auto bool false true true Switching white balance onand off (only for color camera)
wb_ratio_blue float64 0.125 8.0 2.4 Blue to green balance ratio ifwb_auto is false (only forcolor camera)
wb_ratio_red float64 0.125 8.0 1.2 Red to green balance ratio ifwb_auto is false (only forcolor camera)

Basler AGManual: rc_visard 35 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

Description of run-time parameters

Fig. 6.1: The Web GUI’s Camera page
fps (FPS)

This value is the cameras’ frame rate (fps, frames per second), which determines the upperfrequency at which depth images can be computed. This is also the frequency at which the

Basler AGManual: rc_visard 36 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

rc_visard delivers images via GigE Vision. Reducing this frequency also reduces the networkbandwidth required to transmit the images.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?fps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?fps=<value>

The camera always runs with 25 Hz to ensure proper working of internal modules such asvisual odometry that need a constant frame rate. The user frame rate setting is implementedby excluding frames for stereo matching and transmission via GigE Vision to reduce band-width as shown in figure Fig. 6.2.
Internal acquisition
Camera image

Fig. 6.2: Images are internally always captured with 25 Hz. The fps parameter determines how many ofthem are sent as camera images via GigE Vision.

gamma (Gamma)

The gamma value determines the mapping of perceived light to the brightness of a pixel. Agamma value of 1 corresponds to a linear relationship. Lower gamma values let dark imageparts appear brighter. A value around 0.5 corresponds to human vision.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?gamma=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gamma=<value>

exp_control (Exposure Auto, HDR or Manual)

The exposure control mode can be set to Auto, HDR orManual. This replaces the deprecated
exp_auto parameter.
Auto: This is the default mode in which the exposure time and gain factor is chosen automat-ically to correctly expose the image. The last automatically determined exposure and gainvalues are set into exp_value and gain_value when switching auto-exposure off.
HDR: The HDR mode computes high-dynamic-range images by combining images with dif-ferent exposure times to avoid under-exposed and over-exposed areas. This decreases theframe rate and is only suitable for static scenes.
Manual: In themanual exposuremode the exposure time and gain are kept fixed independentof the resulting image brightness.
Via the REST-API, this parameter can be set as follows.
API version 2

Basler AGManual: rc_visard 37 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?exp_control=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_control=<value>

exp_auto (deprecated)

This parameter is deprecated and will be removed in a future release. Please use
exp_control.
This value can be set to true for auto-exposure mode, or to false for manual exposure mode.In manual exposure mode, the chosen exposure time is kept, even if the images are overex-posed or underexposed. In auto-exposuremode, the exposure time and gain factor is chosenautomatically to correctly expose the image. The last automatically determined exposureand gain values are set into exp_value and gain_value when switching auto-exposure off.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?exp_auto=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_auto=<value>

exp_auto_mode (Auto Exposure Mode)

The auto exposure mode can be set to Normal, Out1High or AdaptiveOut1. These modes arerelevant when the rc_visard is used with an external light source or projector connected tothe rc_visard’s or rc_viscore’s GPIO Out1, which can be controlled by the IOControl module(IO and Projector Control, Section 6.4.4).
Normal: All images are considered for exposure control, except if the IOControl mode forGPIO Out1 is ExposureAlternateActive: then only images where GPIO Out1 is HIGH will beconsidered, since these images may be brighter in case GPIO Out1 is used to trigger an ex-ternal light source.
Out1High: This exposure mode adapts the exposure time using only images with GPIO Out1HIGH. Images where GPIO Out1 is LOW are not considered at all, which means, that the ex-posure time does not change when only images with Out1 LOW are acquired. This modeis recommended for using the acquisition_mode SingleFrameOut1 in the stereo matchingmodule as described in Stereo Matching Parameters (Section 6.1.2.5) and having an exter-nal projector connected to GPIO Out1, when changes in the brightness of the scene shouldonly be considered when Out1 is HIGH. This is the case, for example, when a bright part ofthe robot moves through the field of view of the camera just before a detection is triggered,which should not affect the exposure time.
AdaptiveOut1: This exposure mode uses all camera images and tracks the exposure dif-ference between images with GPIO Out1 LOW and HIGH. While the IOControl mode forGPIO Out1 is LOW, the images are under-exposed by this exposure difference to avoid over-exposure for when GPIO Out1 triggers an external projector. The resulting exposure differ-ence is given as Out1 Reduction below the live images. This mode is recommended for us-ing the acquisition_mode SingleFrameOut1 in the stereo matching module as described in
Stereo Matching Parameters (Section 6.1.2.5) and having an external projector connected to

Basler AGManual: rc_visard 38 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

GPIO Out1, when changes in the brightness of the scene should be considered at all times.This is the case, for example, in applications where the external lighting changes.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?exp_auto_mode=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_auto_mode=<value>

exp_max (Max Exposure)

This value is the maximal exposure time in auto-exposure mode in seconds. The actualexposure time is adjusted automatically so that the images are exposed correctly. If themaximum exposure time is reached, but the images are still underexposed, the rc_visardstepwise increases the gain to increase the images’ brightness. Limiting the exposure timeis useful for avoiding or reducing motion blur during fast movements. However, higher gainintroduces noise into the image. The best trade-off depends on the application.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?exp_max=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_max=<value>

exp_auto_average_max (Max Brightness) and exp_auto_average_min (Min Brightness)

The auto-exposure tries to set the exposure time and gain factor such that the average inten-sity (i.e. brightness) in the image or exposure region is between amaximum and aminimum.The maximum brightness will be used if there is no saturation, e.g. no over-exposure due tobright surfaces or reflections. In case of saturation, the exposure time and gain factor arereduced, but only down to the minimum brightness.
The maximum brightness has precedence over the minimum brightness parameter. If theminimum brightness is larger than the maximum brightness, the auto-exposure always triesto make the average intensity equal to the maximum brightness.
The current brightness is always shown in the status bar below the images.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?<exp_auto_

→˓average_max|exp_auto_average_min>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_auto_average_max|exp_auto_

→˓average_min>=<value>

Basler AGManual: rc_visard 39 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

exp_offset_x, exp_offset_y, exp_width, exp_height (Exposure Region)

These values define a rectangular region in the left rectified image for limiting the area usedfor computing the auto exposure. The exposure time and gain factor of both images arechosen to optimally expose the defined region. This can lead to over- or underexposure ofimage parts outside the defined region. If either the width or height is 0, then the whole leftand right images are considered by the auto exposure function. This is the default.
The region is visualized in the Web GUI by a rectangle in the left rectified image. It can bedefined using the sliders or by selecting it in the image after pressing the button Select
Region in Image.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?<exp_offset_

→˓x|exp_offset_y|exp_width|exp_height>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<exp_offset_x|exp_offset_y|exp_

→˓width|exp_height>=<value>

exp_value (Exposure)

This value is the exposure time in manual exposure mode in seconds. This expo-sure time is kept constant even if the images are underexposed.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?exp_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?exp_value=<value>

gain_value (Gain)

This value is the gain factor in decibel that can be set in manual exposure mode. Higher gainfactors reduce the required exposure time but introduce noise.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?gain_value=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?gain_value=<value>

Basler AGManual: rc_visard 40 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

wb_auto (White Balance Auto or Manual)

This value can be set to true for automatic white balancing or false for manually setting theratio between the colors using wb_ratio_red and wb_ratio_blue. The last automaticallydetermined ratios are set into wb_ratio_red and wb_ratio_blue when switching automaticwhite balancing off. White balancing is without function for monochrome cameras and willnot be displayed in the Web GUI in this case.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?wb_auto=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?wb_auto=<value>

wb_ratio_blue and wb_ratio_red (Blue | Green and Red | Green)

These values are used to set blue to green and red to green ratios for manual white balance.White balancing is without function for monochrome cameras and will not be displayed inthe Web GUI in this case.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/parameters?<wb_ratio_

→˓blue|wb_ratio_red>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/parameters?<wb_ratio_blue|wb_ratio_red>=
→˓<value>

These parameters are also available over the GenICam interface with slightly different names and partlywith different units or data types (see GigE Vision 2.0/GenICam image interface, Section 7.2).
6.1.1.4 Status values

This module reports the following status values:

Basler AGManual: rc_visard 41 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

Table 6.2: The rc_camera module’s status values
Name Description
baseline Stereo baseline 𝑡 in meters
brightness Current brightness of the image as value between 0 and 1
color 0 for monochrome cameras, 1 for color cameras
exp Current exposure time in seconds. This value is shown below theimage preview in the Web GUI as Exposure (ms).
focal Focal length factor normalized to an image width of 1
fps Current frame rate of the camera images in Hertz. This value is shownin the Web GUI below the image preview as FPS (Hz).
gain Current gain factor in decibel. This value is shown in the Web GUIbelow the image preview as Gain (dB).
gamma Current gamma value.
height Height of the camera image in pixels. This value is shown in the WebGUI below the image preview as the second part of Resolution (px).
out1_reduction Fraction of reduction (0.0 - 1.0) of brightness for images with GPIOOut1=LOW in exp_auto_mode=AdaptiveOut1 orexp_auto_mode=Out1High. This value is shown in the Web GUI belowthe image preview as Out1 Reduction (%).
params_override_active 1 if parameters are temporarily overwritten by a calibration process
temp_left Temperature of the left camera sensor in degrees Celsius
temp_right Temperature of the right camera sensor in degrees Celsius
test 0 for live images and 1 for test images
time Processing time for image grabbing in seconds
width Width of the camera image in pixels. This value is shown in the WebGUI below the image preview as the first part of Resolution (px).

6.1.1.5 Services

The camera module offers the following services.
reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_camera/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_camera/services/reset_defaults

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_defaults",
"response": {

(continues on next page)

Basler AGManual: rc_visard 42 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

(continued from previous page)
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.1.2 Stereo matching

The stereomatchingmodule is a basemodulewhich is available on every rc_visard and uses the rectifiedstereo-image pair to compute disparity, error, and confidence images. It also offers a service tomeasuredepth in a specified image region (see Services, Section 6.1.2.7).
To compute full resolution disparity, error and confidence images, an additional StereoPlus license (Sec-tion 8.7) is required. This license is included in every rc_visard purchased after 31.01.2019.
6.1.2.1 Computing disparity images

After rectification, an object point is guaranteed to be projected onto the same pixel row in both left andright image. That point’s pixel column in the right image is always lower than or equal to the same point’spixel column in the left image. The term disparity signifies the difference between the pixel columns inthe right and left images and expresses the depth or distance of the object point from the camera. Thedisparity image stores the disparity values of all pixels in the left camera image.
The larger the disparity, the closer the object point. A disparity of 0 means that the projections of theobject point are in the same image column and the object point is at infinite distance. Often, there arepixels for which disparity cannot be determined. This is the case for occlusions that appear on the leftsides of objects, because these areas are not seen from the right camera. Furthermore, disparity cannotbe determined for textureless areas. Pixels for which the disparity cannot be determined are marked asinvalid with the special disparity value of 0. To distinguish between invalid disparity measurements anddisparity measurements of 0 for objects that are infinitely far away, the disparity value for the latter isset to the smallest possible disparity value above 0.
To compute disparity values, the stereo matching algorithm has to find corresponding object points inthe left and right camera images. These are points that represent the same object point in the scene.For stereo matching, the rc_visard uses SGM (Semi-Global Matching), which offers quick run times andgreat accuracy, especially at object borders, fine structures, and in weakly textured areas.
A key requirement for any stereo matching method is the presence of texture in the image, i.e., image-intensity changes due to patterns or surface structurewithin the scene. In completely untextured regionssuch as a flat white wall without any structure, disparity values can either not be computed or the resultsare erroneous or have low confidence (see Confidence and error images, Section 6.1.2.3). The texture inthe scene should not be an artificial, repetitive pattern, since those structures may lead to ambiguitiesand hence to wrong disparity measurements.
When working with poorly textured objects or in untextured environments, a static artificial texture canbe projected onto the scene using an external pattern projector. This pattern should be random-likeand not contain repetitive structures. The rc_visard provides the IOControl module (see IO and Projector
Control, Section 6.4.4) as optional software module which can control a pattern projector connected tothe sensor.
6.1.2.2 Computing depth images and point clouds

The following equations show how to compute an object point’s actual 3D coordinates 𝑃𝑥, 𝑃𝑦, 𝑃𝑧 in thecamera coordinate frame from the disparity image’s pixel coordinates 𝑝𝑥, 𝑝𝑦 and the disparity value 𝑑 in

Basler AGManual: rc_visard 43 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

pixels:
𝑃𝑥 =

𝑝𝑥 · 𝑡
𝑑

𝑃𝑦 =
𝑝𝑦 · 𝑡
𝑑

𝑃𝑧 =
𝑓 · 𝑡
𝑑

,

(6.1)

where 𝑓 is the focal length after rectification in pixels and 𝑡 is the stereo baseline in meters, whichwas determined during calibration. These values are also transferred over the GenICam interface (see
Custom GenICam features of the rc_visard, Section 7.2.4).
Note: The rc_visard’s camera coordinate frame is defined as shown in Coordinate frames (Section3.7).
Note: The rc_visard reports a focal length factor via its various interfaces. It relates to the imagewidth for supporting different image resolutions. The focal length 𝑓 in pixels can be easily obtainedby multiplying the focal length factor by the image width in pixels.

Please note that equations (6.1) assume that the coordinate frame is centered in the principal point thatis typically in the center of the image, and 𝑝𝑥, 𝑝𝑦 refer to the middle of the pixel, i.e. by adding 0.5 to theinteger pixel coordinates. The following figure shows the definition of the image coordinate frame.

Fig. 6.3: The image coordinate frame’s origin is defined to be at the image center – 𝑤 is the image widthand ℎ is the image height.
The same equations, but with the corresponding GenICam parameters are given in Image stream con-
versions (Section 7.2.7).
The set of all object points computed from the disparity image gives the point cloud, which can be usedfor 3D modeling applications. The disparity image is converted into a depth image by replacing thedisparity value in each pixel with the value of 𝑃𝑧.
6.1.2.3 Confidence and error images

For each disparity image, additionally an error image and a confidence image are provided, which giveuncertainty measures for each disparity value. These images have the same resolution and the sameframe rate as the disparity image. The error image contains the disparity error 𝑑𝑒𝑝𝑠 in pixels correspond-ing to the disparity value at the same image coordinates in the disparity image. The confidence imagecontains the corresponding confidence value 𝑐 between 0 and 1. The confidence is defined as the prob-ability of the true disparity value being within the interval of three times the error around the measureddisparity 𝑑, i.e., [𝑑− 3𝑑𝑒𝑝𝑠, 𝑑+ 3𝑑𝑒𝑝𝑠]. Thus, the disparity image with error and confidence values can beused in applications requiring probabilistic inference. The confidence and error values corresponding toan invalid disparity measurement will be 0.
The disparity error 𝑑𝑒𝑝𝑠 (in pixels) can be converted to a depth error 𝑧𝑒𝑝𝑠 (in meters) using the focallength 𝑓 (in pixels), the baseline 𝑡 (in meters), and the disparity value 𝑑 (in pixels) of the same pixel in the

Basler AGManual: rc_visard 44 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

disparity image:
𝑧𝑒𝑝𝑠 =

𝑑𝑒𝑝𝑠 · 𝑓 · 𝑡
𝑑2

. (6.2)
Combining equations (6.1) and (6.2) allows the depth error to be related to the depth:

𝑧𝑒𝑝𝑠 =
𝑑𝑒𝑝𝑠 · 𝑃𝑧

2

𝑓 · 𝑡
.

With the focal lengths and baselines of the different cameramodels and the typical combined calibrationand stereo matching error 𝑑𝑒𝑝𝑠 of 0.25 pixels, the depth accuracy can be visualized as shown below.

6.1.2.4 Viewing and downloading images and point clouds

The rc_visard provides time-stamped disparity, error, and confidence images over the GenICam interface(see Provided image streams, Section 7.2.6). Live streams of the images are provided with reducedquality on the Depth Image page of the Web GUI (Section 7.1).
The Web GUI also provides the possibility to download a snapshot of the current scene containing thedepth, error and confidence images, as well as a point cloud in ply format as described in Downloading
depth images and point clouds (Section 7.1.5).
6.1.2.5 Parameters

The stereo matching module is called rc_stereomatching in the REST-API and it is represented by the
Depth Image page in the Web GUI (Section 7.1). The user can change the stereo matching parametersthere, or use the REST-API (REST-API interface, Section 7.3) or GigE Vision (GigE Vision 2.0/GenICam
image interface, Section 7.2).
Parameter overview

This module offers the following run-time parameters:

Basler AGManual: rc_visard 45 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

Table 6.3: The rc_stereomatching module’s run-time parameters
Name Type Min Max Default Description
acquisition_mode string - - Continuous Acquisition mode:[Continuous,SingleFrame,SingleFrameOut1]
double_shot bool false true false Combination ofdisparity images fromtwo subsequent stereoimage pairs
exposure_adapt_timeout float64 0.0 2.0 0.0 Maximum time inseconds to wait aftertriggering inSingleFrame modesuntil auto exposurehas finishedadjustments
fill int32 0 4 3 Disparity tolerance forhole filling in pixels
maxdepth float64 0.1 100.0 100.0 Maximum depth inmeters
maxdeptherr float64 0.01 100.0 100.0 Maximum depth errorin meters
minconf float64 0.5 1.0 0.5 Minimum confidence
mindepth float64 0.1 100.0 0.1 Minimum depth inmeters
quality string - - High Quality: [Low, Medium,High, Full]. Fullrequires ‘stereo_plus’license.
seg int32 0 4000 200 Minimum size of validdisparity segments inpixels
smooth bool false true true Smoothing of disparityimage (requires‘stereo_plus’ license)
static_scene bool false true false Accumulation ofimages in staticscenes to reduce noise

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s Depth Image page. The name in theWeb GUI is given in brackets behind the parameter name and the parameters are listed in the order theyappear in the Web GUI:

Basler AGManual: rc_visard 46 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

Fig. 6.4: The Web GUI’s Depth Image page

acquisition_mode (Acquisition Mode)

The acquisition mode can be set to Continuous, SingleFrame (Single) or
SingleFrameOut1 (Single + Out1). The first one is the default, which performsstereo matching continuously according to the user defined frame rate and theavailable computation resources. The two other modes perform stereo matchingupon each click of theAcquire button. The Single + Out1mode additionally controlsan external projector that is connected to GPIO Out1 (IO and Projector Control, Sec-tion 6.4.4). In this mode, out1_mode of the IOControl module is automatically set to
ExposureAlternateActive upon each trigger call and reset to Low after receivingimages for stereo matching.

Basler AGManual: rc_visard 47 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

Note: The Single + Out1mode can only change the out1_mode if the IOControllicense is available on the rc_visard.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓acquisition_mode=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?acquisition_mode=<value>

exposure_adapt_timeout (Exposure Adaptation Timeout)

The exposure adaptation timeout gives the maximum time in seconds that thesystemwill wait after triggering an image acquisition until auto exposure has foundthe optimal exposure time. This timeout is only used in SingleFrame (Single) or
SingleFrameOut1 (Single + Out1) acquisition mode with auto exposure active. Thisvalue should be increased in applications with changing lighting conditions, whenimages are under- oder overexposed and the resulting disparity images are toosparse. In these cases multiple images are acquired until the auto-exposure modehas adjusted or the timeout is reached, and only then the actual image acquisitionis triggered.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓exposure_adapt_timeout=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?exposure_adapt_timeout=
→˓<value>

quality (Quality)

Disparity images can be computed in different resolutions: Full (full image res-olution), High (half of the full image resolution), Medium (quarter of the full imageresolution) and Low (sixth of the full image resolution). Full resolution matching(Full) is only possible with a valid StereoPlus license. The lower the resolution,the higher the frame rate of the disparity image. Please note that the frame rate ofthe disparity, confidence, and error images will always be less than or equal to thecamera frame rate. In case the projector is in ExposureAlternateActivemode, theframe rate of the images can be at most half of the camera frame rate.
A 25 Hz frame rate can be achieved only at the lowest resolution.
If full resolution is selected, the depth range is internally limited due to limited on-board memory resources. It is recommended to adjust mindepth and maxdepth tothe depth range that is required by the application.

Basler AGManual: rc_visard 48 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

Table 6.4: Depth image resolutions depending on the chosen qual-ity
Quality Full High Medium LowResolution (pixel) 1280 x 960 640 x 480 320 x 240 214 x 160

Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓quality=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?quality=<value>

double_shot (Double-Shot)

Enabling this option will lead to denser disparity images, but will increase processing time.
For scenes recorded with a projector in Single + Out1 acquisition mode, or in continuousacquisition mode with the projector in ExposureAlternateActivemode, holes caused by re-flections of the projector are filled with depth information computed from the imageswithoutprojector pattern. In this case, the double_shot parameter must only be enabled if the scenedoes not change during the acquisition of the images.
For all other scenes, holes are filled with depth information computed from a downscaledversion of the same image.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓double_shot=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?double_shot=<value>

static_scene (Static)

This option averages 8 consecutive camera images before matching. This reduces noise,which improves the stereo matching result. However, the latency increases significantly.The timestamp of the first image is taken as timestamp of the disparity image. This optiononly affects matching in full or high quality. It must only be enabled if the scene does notchange during the acquisition of the 8 images.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓static_scene=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?static_scene=<value>

Basler AGManual: rc_visard 49 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

mindepth (Minimum Distance)

The minimum distance is the smallest distance from the camera at which measurementsshould be possible. Larger values implicitly reduce the disparity range, which also reducesthe computation time. The minimum distance is given in meters.
Depending on the capabilities of the sensor, the actual minimum distance can be higher thanthe user setting. The actual minimum distance will be reported in the status values.
In qualitymode Full, the actual minimumdistance can also be higher than the user-definedminimum distance due to memory limitations. In this case, lowering the maximum distancehelps to reduce the actual minimum distance.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓mindepth=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?mindepth=<value>

maxdepth (Maximum Distance)

The maximum distance is the largest distance from the camera at which measurementsshould be possible. Pixels with larger distance values are set to invalid in the disparity image.Setting this value to its maximum permits values up to infinity. The maximum distance isgiven in meters.
In quality mode Full, the actual minimum distance can be higher than the user-definedminimum distance due to memory limitations. In this case, lowering the maximum distancehelps to reduce the actual minimum distance.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓maxdepth=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?maxdepth=<value>

smooth (Smoothing)

This option activates advanced smoothing of disparity values. It is only available with a validStereoPlus license.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓smooth=<value>

API version 1 (deprecated)

Basler AGManual: rc_visard 50 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?smooth=<value>

fill (Fill-in)

This option is used to fill holes in the disparity image by interpolation. The fill-in value is themaximum allowed disparity step on the border of the hole. Larger fill-in values can decreasethe number of holes, but the interpolated values can have larger errors. At most 5% of pixelsare interpolated. Interpolation of small holes is preferred over interpolation of larger holes.The confidence for the interpolated pixels is set to a low value of 0.5. A fill-in value of 0switches hole filling off.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓fill=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?fill=<value>

seg (Segmentation)

The segmentation parameter is used to set the minimum number of pixels that a connecteddisparity region in the disparity image must fill. Isolated regions that are smaller are set toinvalid in the disparity image. The value is related to the high quality disparity image with halfresolution and does not have to be scaled when a different quality is chosen. Segmentationis useful for removing erroneous disparities. However, larger values may also remove realobjects.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?seg=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?seg=<value>

minconf (Minimum Confidence)

The minimum confidence can be set to filter potentially false disparity measurements. Allpixels with less confidence than the chosen value are set to invalid in the disparity image.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓minconf=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?minconf=<value>

Basler AGManual: rc_visard 51 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

maxdeptherr (Maximum Depth Error)

The maximum depth error is used to filter measurements that are too inaccurate. All pixelswith a larger depth error than the chosen value are set to invalid in the disparity image. Themaximum depth error is given in meters. The depth error generally grows quadratically withan object’s distance from the camera (see Confidence and error images, Section 6.1.2.3).
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/parameters?
→˓maxdeptherr=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/parameters?maxdeptherr=<value>

The same parameters are also available over the GenICam interface with slightly different names andpartly with different data types (see GigE Vision 2.0/GenICam image interface, Section 7.2).
6.1.2.6 Status values

This module reports the following status values:
Table 6.5: The rc_stereomatching module’s status values

Name Description
fps Actual frame rate of the disparity, error, and confidence images. This valueis shown in the Web GUI below the image preview as FPS (Hz).
latency Time in seconds between image acquisition and publishing of disparityimage
width Current width of the disparity, error, and confidence images in pixels
height Current height of the disparity, error, and confidence images in pixels
mindepth Actual minimum working distance in meters
maxdepth Actual maximum working distance in meters
time_matching Time in seconds for performing stereo matching using SGM on the GPU
time_postprocessing Time in seconds for postprocessing the matching result on the CPU
reduced_depth_range Indicates whether the depth range is reduced due to computationresources

6.1.2.7 Services

The stereo matching module offers the following services.
acquisition_trigger

Signals themodule to perform stereomatching of the next available images, if the parameter
acquisition_mode is set to SingleFrame or SingleFrameOut1.
Details

An error is returned if the acquisition_mode is set to Continuous.
This service can be called as follows.
API version 2

Basler AGManual: rc_visard 52 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/services/acquisition_

→˓trigger

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/acquisition_trigger

Request

This service has no arguments.
Response

Possible return codes are shown below.
Table 6.6: Possible return codes of the acquisition_trigger ser-vice call.

Code Description0 Success-8 Triggering is only possible in SingleFrame acquisition mode101 Trigger is ignored, because there is a trigger call pending102 Trigger is ignored, because there are no subscribers
The definition for the response with corresponding datatypes is:
{

"name": "acquisition_trigger",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

measure_depth

Computes the average, minimum and maximum depth in a given region of interest, whichcan optionally be subdivided into cells.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/services/measure_depth

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/measure_depth

Request

Optional arguments:
region_of_interest_2d_id is the ID of the 2D region of interest (see RoiDB, Sec-tion 6.5.2) that will be used for the depth measurements.
region_of_interest_2d is an alternative on-the-fly definition of the region of in-terest for the depth measurements. This region of interest will be ignored if a
region_of_interest_2d_id is given. The region of interest is always defined on

Basler AGManual: rc_visard 53 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

the camera image with full resolution, where offset_x and offset_y are the pixelcoordinates of the upper left corner of the rectangular region of interest, and widthand height are the width and height of it in pixels. Default is a region of interestcovering the whole image.
cell_count is the number of cells in x and y direction into which the region ofinterest is divided. If not given, a cell count of 0, 0 is assumed and only the overallvalues will be computed. The total cell count computed as product of the x and yvalues must not exceed 100.
data_acquisition_mode: if set to CAPTURE_NEW (default), a new image dataset willbe used for the measurement. If set to USE_LAST, the previous dataset will be usedfor the measurement.
pose_frame controls whether the coordinates of the depth measurement are re-turned in the camera or external frame, if a hand-eye calibration is available (see
Hand-eye calibration, Section 6.4.1). The default is camera.

Potentially required arguments:
robot_pose is the pose of the robot at the time of the depth measurement. It isrequired when the external pose frame is used and the camera is robot mounted.

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"cell_count": {
"x": "uint32",
"y": "uint32"

},
"data_acquisition_mode": "string",
"pose_frame": "string",
"region_of_interest_2d": {
"height": "uint32",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

},
"region_of_interest_2d_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

Table 6.7: return_code values of the measure_depth service call
value Description0 measurement successful-1 an invalid argument was given

Basler AGManual: rc_visard 54 Rev: 24.01.1Status: Jan 29, 2024

6.1. 3D camera modules

cells contains the depth measurements of all requested cells. The cells are always orderedfrom left to right and top to bottom in image coordinates.
overall contains the depth measurements of the full region of interest.
coverage is a number between 0 and 1 which reflects the fraction of valid depth measure-ments inside the respective cell. A coverage of 0 means that the cell is invalid.
min_z and max_z return the 3D coordinate of the point in the cell with the minimum andmaxi-mum depth value, respectively. The depth value is the z coordinate in the camera coordinatesystem.
For mean_z, the x and y coordinates define the point in the middle of the cell and the z coor-dinate is determined by the average of all depth value measurements in the cell.
region_of_interest_2d returns the definition of the requested region of interest for thedepth measurement.
If pose_frame is external, then the x, y and z coordinates are returned in the robot coordinatesystem.
The definition for the response with corresponding datatypes is:
{

"name": "measure_depth",
"response": {
"cell_count": {
"x": "uint32",
"y": "uint32"

},
"cells": [
{

"coverage": "float64",
"max_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"mean_z": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_z": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

],
"overall": {

"coverage": "float64",
"max_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"mean_z": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"min_z": {

"x": "float64",

(continues on next page)

Basler AGManual: rc_visard 55 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

(continued from previous page)
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"region_of_interest_2d": {
"height": "uint32",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereomatching/services/reset_defaults

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2 Navigation modules

The rc_visard’s navigation modules contain:

Basler AGManual: rc_visard 56 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

• Sensor dynamics (rc_dynamics, Section 6.2.1) provides estimates of rc_visard’s dynamic statesuch as its pose, velocity, and acceleration. These states are transmitted as continuous datastreams via the rc_dynamics interface. For this purpose, the dynamics module manages andfuses data from the following individual subcomponents:
– Visual odometry (rc_stereovisodo, Section 6.2.2) estimates the motion of the

rc_visard device based on the motion of characteristic visual features in theleft camera images.
– Stereo INS (rc_stereo_ins, Section 6.2.3) combines visual odometry measurementswith readings from the on-board Inertial Measurement Unit (IMU) to provide accurateand high-frequency state estimates in real time.
– SLAM (rc_slam, Section 6.2.4) performs simultaneous localization and mapping forcorrecting accumulated poses. The rc_visard’s covered trajectory is offered via the

REST-API interface (Section 7.3).

6.2.1 Sensor dynamics

The dynamics module is a base module which is available on every rc_visard and provides estimatesof the sensor state. These include pose, linear velocity, linear acceleration, and rotational rates. Themodule handles starting and stopping, and streaming of the estimates for individual subcomponents:
• Visual odometry (rc_stereovisodo) estimates the camera’s motion from the motion of charac-teristic image points in the left camera images (Section 6.2.2).
• Stereo INS (rc_stereo_ins) combines visual odometry measurements with readings from an in-ertial measurement unit (IMU) to provide accurate, high-frequency state estimates in realtime (Section 6.2.3).
• SLAM (rc_slam) performs simultaneous localization andmapping (SLAM) for correcting accumu-lated poses (Section 6.2.4).

Note: Using Stereomatching (Section 6.1.2) in parallel to the dynamicsmodulemay lead to decreasedlocalization accuracy. See Visual odometry (Section 6.2.2) for how to avoid this.

6.2.1.1 Coordinate frames for state estimation

The world coordinate frame for state estimation is defined as follows: The coordinate frame’s z-axispoints upward and is aligned with the gravity vector. The x-axis is orthogonal to the z-axis and points inthe rc_visard’s viewing direction at the time when the pose estimation starts. The world frame’s originis located at the origin of the rc_visard’s IMU coordinate frame at the instant when state estimation isswitched on.
If pose estimation is switched on when the rc_visard’s viewing direction parallels the gravity vector (witha tolerance range of 10 degrees), then the world coordinate frame’s y-axis is aligned either with the IMU’spositive or negative x-axis. In this orientation, the initial alignment of the world coordinate frame is nolonger continuous. Thus, special care has to be taken when pose estimation has to be started at suchan orientation.

Basler AGManual: rc_visard 57 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

xIMU

yIMUzIMU

zCam

xCam

yCam

xIMU

yIMU

zIMU

zCam

xCam

yCam

t=0

zW

yW

xW

t=t

Fig. 6.5: Coordinate frames for state estimation. The IMU coordinate frame is inside the rc_visard’shousing. The camera coordinate frame (Section 3.7) is in the focal point of the left camera.
The transformation between the IMU coordinate frame and the camera/sensor frame is also estimatedand provided in the real-time dynamics stream over the rc_dynamics interface (see Interfaces, Section7).
Warning: The stereo INS module self-calibrates the IMU during its initialization. It is therefore re-quired that the rc_visard is not moving and sufficient texture is visible during startup of the stereoINS module.

6.2.1.2 Available state estimates

The rc_visard provides seven different kinds of timestamped state-estimate data streams via therc_dynamics interface (see The rc_dynamics interface, Section 7.4):
Name Fre-quency Source Description
pose 25 Hz best effort Pose of camera frame, slightly delayed but most accurate
pose_ins 25 Hz Stereo INS Pose of camera frame, slightly delayed but most accurate
pose_rt 200 Hz best effort Pose of camera frame
pose_rt_ins 200 Hz Stereo INS Pose of camera frame
dynamics 200 Hz best effort Pose, velocity and acceleration in IMU frame
dynam-
ics_ins

200 Hz Stereo INS Pose, velocity and acceleration in IMU frame
imu 200 Hz Stereo INS Raw IMU data

Best effort here means that if SLAM is running, then it contains the loop-closure corrected estimatesand is equivalent to the stream from Stereo INS when SLAM is not running.

Basler AGManual: rc_visard 58 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

Camera-pose streams (pose and pose_ins)

The camera-pose streams called pose and pose_ins are provided at 25 Hz with timestamps that corre-spond to image timestamps. The former stream is the best-effort estimate, combining SLAM and Stereo
INS if the SLAM module is running. If SLAM is not running, then both data streams are equivalent. Posevalues are given in world coordinates, and also refer to the rc_visard’s camera frame origin (see Coor-
dinate frames for state estimation, Section 6.2.1.1). They are the most accurate estimates, taking allavailable rc_visard information into consideration. They can be used in modeling applications, wherecamera images, depth images, or point clouds have to be aligned highly accurately with each other.To ensure the greatest possible accuracy, these pose values are delayed until a corresponding visualodometry measurement is available.
Real-time camera-pose streams (pose_rt and pose_rt_ins)

Two real-time pose streams called pose_rt and pose_rt_ins are provided at the IMU rate of 200 Hz.The former stream is the best-effort estimate, combining SLAM and Stereo INS when the SLAM moduleis running. If SLAM is not running, then both data streams are equivalent. They consist of the poseestimates of the rc_visard’s camera frame origin (see Coordinate frames for state estimation, Section6.2.1.1) in world coordinates. The values given in these streams correspond to the values in the real-
time dynamics streams, but give the pose of the sensor/camera coordinate frame instead of that of theIMU coordinate frame.
Real-time dynamics streams (dynamics and dynamics_ins)

Two real-time dynamics streams called dynamics and dynamics_ins are provided at the IMU rate of 200Hz. The former stream is the best-effort estimate, combining SLAM and Stereo INS when the SLAMmodule is running. If SLAM is not running, then both data streams are equivalent. The estimates canbe used for real-time control of a robot. Since the values are provided in real time and visual odometrycomputation requires some processing time, the latest visual odometry estimate may not be included.Therefore, these estimates are in general slightly less accurate than those in the non-real-time camera-
pose streams (see above), but are the best estimates available at this instant. The provided dynamicsstreams contain the rc_visard’s

• translation p = (𝑥, 𝑦, 𝑧)𝑇 in 𝑚,
• rotation q = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧, 𝑞𝑤) as unit quaternion,
• linear velocities v = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)

𝑇 in 𝑚
𝑠 ,

• angular velocities 𝜔 = (𝜔𝑥, 𝜔𝑦, 𝜔𝑧)
𝑇 in 𝑟𝑎𝑑

𝑠 ,
• gravity-compensated linear accelerations a = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧)

𝑇 in 𝑚
𝑠2 , and

• transformation from camera to IMU coordinate frame as pose with frame name and parent framename.
For each module, the stream also provides the name of the coordinate frame in which the values aregiven. Translation, rotation, and linear velocities are given in the world frame; angular velocities andaccelerations are given in the IMU frame (see Coordinate frames for state estimation, Section 6.2.1.1).All values refer to the IMU frame’s origin. That means, for example, that linear velocity is the velocity ofthe IMU frame’s origin in the world frame.
Lastly, the stream contains a possible_jump flag, which is set to truewhenever the optional SLAMmod-ule (see SLAM, Section 6.2.4) corrects the state estimation after finding a loop closure. The state esti-mate can jump in this case, which should be considered when the values are used in a control loop. IfSLAM is not running, the jump flag can be ignored and will stay false.

Basler AGManual: rc_visard 59 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

IMU data stream (imu)

The IMU data stream called imu is provided at the IMU rate of 200 Hz. It consists of the acceleration inx, y, z directions plus the angular velocities around these three axis. The values are calibrated but notbias- and gravity-compensated, and are given in the IMU frame. The transformation between IMU andsensor frame is provided in the real-time dynamics stream.
6.2.1.3 Status values

This module reports the following status values:
Table 6.8: The rc_dynamics module’s status values
Name Description
state The current state of the rc_dynamics node

6.2.1.4 Services

The sensor dynamics module offers the following services for starting dynamics/motion estimation.All services return a numerical code of the entered state. The meaning of the returned state codes andnames are given in Table 6.9.
Table 6.9: Possible states of the sensor dynamics module

State name DescriptionIDLE The module is ready, but idleWAITING_FOR_INS Waiting for stereo INS to start upWAITING_FOR_INS_AND_SLAM Waiting for stereo INS and SLAM to start upRUNNING The stereo INS module is running (SLAM is not running)WAITING_FOR_SLAM Waiting for SLAM to start up (stereo INS is running)RUNNING_WITH_SLAM Both stereo INS and SLAM are runningSTOPPING Transitional state when going to (or through IDLE)FATAL A fatal error has occurred (either in stereo INS or SLAM)
The following diagram shows the main states and transitions. Intermediate states and the fatal errorstate are omitted for conceptual clarity.

Fig. 6.6: Simplified state and transition diagram
These services shall respond quickly. Therefore, for services that cause a state transition the value ofthe returned current_state in general is the first new (intermediate) state that was transitioned to, notthe final state. E.g., for the start command the returned current_state will be WAITING_FOR_INS, not

Basler AGManual: rc_visard 60 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

state RUNNING. If the transition does not take place within 0.1 seconds, the current state is returned.See Table 6.9 for the meaning of the returned state codes.
Note: The state FATAL can only be left by calling stop, which performs a transition to the state IDLE.The services restart and restart_slam internally use stop and will also work as expected. startand start_slam only work if the state is IDLE, and do nothing if the state is FATAL.
Note: The dynamicsmodules can also be started and stopped on the Dynamics page of theWeb GUI.

start

Starts the stereo INS module.
Details

Transitions from state IDLE through WAITING_FOR_INS to RUNNING.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_dynamics/services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_dynamics/services/start

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

start_slam

Starts the SLAM and – if not yet started – the stereo INS module.
Details

From state IDLE: Transitions through WAITING_FOR_INS_AND_SLAM and WAITING_FOR_SLAMto RUNNING_WITH_SLAM. From state RUNNING: Transitions through WAITING_FOR_SLAM to
RUNNING_WITH_SLAM.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_dynamics/services/start_slam

API version 1 (deprecated)

Basler AGManual: rc_visard 61 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

PUT http://<host>/api/v1/nodes/rc_dynamics/services/start_slam

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "start_slam",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the stereo INS and – if running – the SLAM modules.
Details

The trajectory estimate of the SLAM module will still be available. Transitions from state
RUNNING or RUNNING_WITH_SLAM through STOPPING to IDLE.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_dynamics/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_dynamics/services/stop

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop_slam

Stops the SLAM module. Stereo INS will continue to run.
Details

The trajectory estimate of the SLAM module will still be available. Transitions from state
RUNNING_WITH_SLAM to RUNNING.
This service can be called as follows.

Basler AGManual: rc_visard 62 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_dynamics/services/stop_slam

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_dynamics/services/stop_slam

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "stop_slam",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

restart

Restarts to stereo INS. Equivalent to successive stop and start.
Details

From state RUNNING or RUNNING_WITH_SLAM: Transitions through states STOPPING, IDLE and
WAITING_FOR_INS to RUNNING.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_dynamics/services/restart

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_dynamics/services/restart

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "restart",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

restart_slam

Restarts to SLAM mode. Equivalent to successive stop and start_slam.

Basler AGManual: rc_visard 63 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

Details

From state RUNNING or RUNNING_WITH_SLAM: Transitions through states STOPPING, IDLE,
WAITING_FOR_INS_AND_SLAM, WAITING_FOR_SLAM to RUNNING_WITH_SLAM.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_dynamics/services/restart_slam

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_dynamics/services/restart_slam

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "restart_slam",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

get_cam2imu_transform

returns the transformation from camera to IMU coordinate frame.
Details

This is equivalent to the cam2imu_transform in the Dynamics message (Section 7.4.3).
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_dynamics/services/get_cam2imu_transform

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_dynamics/services/get_cam2imu_transform

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "get_cam2imu_transform",
"response": {
"name": "string",
"parent": "string",
"pose": {

"pose": {
"orientation": {

(continues on next page)

Basler AGManual: rc_visard 64 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

(continued from previous page)
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.2 Visual odometry

The visual odometry module is a base module which is available on every rc_visard.
Visual odometry is part of the sensor dynamicsmodule. It is used to estimate the camera’s motion fromthe motion of characteristic image points (so-called image features) in left camera images. Image fea-tures are computed from image corners, which are image regions with high intensity gradients. Imagefeatures are used to look for matches between subsequent images to find correspondences. Their 3Dcoordinates are computed by stereo matching (independent from the disparity image). The camera’smotion is computed from a set of corresponding 3D points between two images. To increase the ro-bustness of visual odometry, correspondences are not only computed to the previous camera image butto a certain number of previous images, which are called keyframes. The best result is then chosen.
The visual-odometry frame rate is independent of the user setting in the stereo camera module. It isinternally limited to 12 Hz but can be lower, depending on the number of features and keyframes. Toensure good pose-estimation quality, the frame rate should not drop significantly under 10 Hz.
Note: Using Stereomatching in parallel to the dynamicsmodulemay lead to a decreased frame rate ofthe visual odometry. In this case, we recommend to decrease the frame rate of theCamera (effectivelydecreasing the frame rate of the depth image computation), to lower the computational load of stereomatching.

The visual odometry module’s measurements are not directly accessible on the rc_visard. Instead, theyare internally fused with measurements from the integrated inertial measurement unit to increase ro-bustness and frequency and reduce latency. The result of the sensor data fusion is provided in the formof different streams (see Stereo INS, Section 6.2.3).
6.2.2.1 Parameters

The visual odometry software module is called rc_stereovisodo and it is represented by the Dynamicspage in the Web GUI (Section 7.1). The user can change the visual odometry parameters there, or usethe REST-API (REST-API interface, Section 7.3).

Basler AGManual: rc_visard 65 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

Parameter overview

This module offers the following run-time parameters:
Table 6.10: The rc_stereovisodo module’s run-time parameters

Name Type Min Max Default Description
disprange int32 32 512 256 Disparity range in pixels
ncorner int32 50 4000 500 Number of corners
nfeature int32 50 4000 300 Number of features
nkey int32 1 4 4 Number of keyframes

Description of run-time parameters

Run-time parameters influence the number of features used to compute visual odometry. More featuresincrease the visual odometry’s robustness at the expense of more run time, which can reduce the framerate. Although the resulting state estimate will always have a high frequency due to fusion with IMUmeasurements, high visual-odometry frame rates are nevertheless desirable, since thesemeasurementsare muchmore accurate than IMUmeasurements alone. A visual-odometry rate of at least 10 Hz shouldthus be aimed for. The visual-odometry frame rate is provided as a status parameter and is shown belowthe camera image on the Web GUI’s Dynamics page.

Fig. 6.7: The Web GUI’s Dynamics page
The camera image shown on this page depicts image features as small green dots. The bold green dotsare the features in the current image for which correspondences could be found in a previous keyframe.Green lines depict the motion of these features relative to the previous keyframe. This visualizationshould help to find a good set of parameters for visual odometry. The number of correspondences is
Basler AGManual: rc_visard 66 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

reported as a status parameter and is shown below the camera image on theWeb GUI’s Dynamics page.For robust visual-odometrymeasurements, the parameters should be adjusted so that the resulting num-ber of correspondences in the target environment is around at least 50 when the sensor is moving. Thecorrespondence count will be larger when the rc_visard is static, and the number will change when the
rc_visard moves through the environment. Short failures of the visual odometry are tolerated due tothe fusion with IMU measurements. Longer failures should be avoided because they lead to large poseuncertainties and can lead to errors in the state estimation.
Each run-time parameter is represented by a row on the Web GUI’s Dynamics page. The name of the rowis given in brackets behind the parameter name, and the parameters are listed in the order they appearin the Web GUI:
disprange (Disparity Range)

The disparity range gives the maximum disparity value for each image feature related to theresolution of the high-quality disparity image (half image resolution). The disparity rangedetermines the minimum working distance of the visual odometry. When the disparity rangeis narrow, onlymore distant features are considered in the visual-odometry estimation. Whenchoosing a broader disparity range, close features can also be used. Broader disparity rangesincrease processing time, which can reduce the visual odometry’s frame rate.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereovisodo/parameters?disprange=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereovisodo/parameters?disprange=<value>

nkey (Number of Keyframes)

More keyframes can increase the robustness and accuracy of the visual odometry, but theyalso increase processing time and can decrease the visual-odometry frame rate.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereovisodo/parameters?nkey=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereovisodo/parameters?nkey=<value>

ncorner (Number of Corners)

This value gives the approximate number of corners that will be detected in the left image.Larger numbersmake visual odometrymore robust and accurate but can lead to lower framerates of the visual odometry.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereovisodo/parameters?ncorner=<value>

API version 1 (deprecated)

Basler AGManual: rc_visard 67 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

PUT http://<host>/api/v1/nodes/rc_stereovisodo/parameters?ncorner=<value>

nfeature (Number of Features)

This value is the maximum number of features that will be derived from the corners. It isuseful to detect more corners and select the best subset as features. Larger numbers makevisual odometrymore robust and accurate but can lead to lower visual-odometry frame rates.Fewer features might be computed, depending on the scene and movement. The actualnumber of features is reported below the camera image on the Web GUI’s Dynamics page.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereovisodo/parameters?nfeature=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereovisodo/parameters?nfeature=<value>

Note: Increasing the number of keyframes, corners, or features will also increase robustness but willrequire more computation time and may reduce the frame rate, depending on other modules activeon the rc_visard. The visual-odometry frame rate should be at least 10 Hz.

6.2.2.2 Status values

This module reports the following status values:
Table 6.11: The rc_stereovisodo module’s status values

Name Description
corner Number of detected corners. This value is shown as Corners below the imagepreview in the Web GUI.
correspondences Number of correspondences. This value is shown as Correspondences belowthe image preview in the Web GUI.
feature Number of features. This value is shown as Features below the image previewin the Web GUI.
fps Frame rate of the visual odometry in Hertz. This value is shown below theimage preview as Visual Odometry FPS (Hz) in the Web GUI.
time_frame Processing time in seconds to compute corners and features for each frame
time_vo Processing time in seconds to compute the motion

6.2.2.3 Services

This module offers no start or stop services itself, because the dynamics module (Section 6.2.1) startsand stops it.
The visual odometry module offers the following services for persisting and restoring parameter set-tings.
reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).
Details

Basler AGManual: rc_visard 68 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereovisodo/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_stereovisodo/services/reset_defaults

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.2.3 Stereo INS

The stereo-vision-aided Inertial Navigation System (INS) module is a base module which is available onevery rc_visard and is part of the sensor dynamics module. It combines visual-odometry measurementswith inertial measurement unit (IMU) data and provides robust, low latency, real-time state estimates at ahigh rate. The IMUconsists of three accelerometers and three gyroscopes, whichmeasure accelerationsand turn rates in all three dimensions. By fusing IMU and visual-odometry measurements, the stateestimate has the same frequency as the IMU (200 Hz) and is very robust even under challenging lightingconditions and for fast motions.
Note: To achieve high-quality pose estimates, it must be ensured that sufficient texture is visibleduring runtime of the stereo INS module. In case no texture is visible for a longer period of time, thestereo INS module will stop instead of providing highly erroneous data.

6.2.3.1 Self-Calibration

During startup of the stereo INS module, it will self-calibrate the IMU using the visual-odometry mea-surements. For the self-calibration to succeed, it is required that
• the rc_visard is not moving and
• sufficient texture is visible

during startup of the stereo INS module. Failure to meet these requirements will most likely result in aconstant drift of the pose estimates.
6.2.3.2 Parameters

The stereo INS module’s node name is rc_stereo_ins.
This module has no run-time parameters.

Basler AGManual: rc_visard 69 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

6.2.3.3 Status values

This module reports the following status values:
Table 6.12: The rc_stereo_ins module’s status values
Name Description
freq Frequency of the stereo INS process in Hertz
state String representing the internal state

6.2.4 SLAM

The SLAMmodule is an optional on-boardmodule of the rc_visard and requires a separate SLAM license(Section 8.7) to be purchased. If a SLAM license is stored on the rc_visard, then the SLAM module isshown as Available on the Web GUI’s License section of the System page.
The SLAM module is part of the sensor dynamics module. It provides additional accuracy for the poseestimate of the stereo INS. When the rc_visard moves through the world, the pose estimate slowly ac-cumulates errors over time. The SLAM module can correct these pose errors by recognizing previouslyvisited places.
The acronym SLAM stands for Simultaneous Localization and Mapping. The SLAM module creates amap consisting of the image features as used in the visual odometry module. The map is later used tocorrect accumulated pose errors. This is most apparent in applications where, e.g., a robot returns toa previously visited place after covering a large distance (this is called a loop closure). In this case, therobot can re-detect image features that are already stored in its map and can use this information tocorrect the drift in the pose estimate that accumulated since the last visit.
When closing a loop, not only the current pose, but also the past pose estimates (the trajectory of the
rc_visard), are corrected. Continuous trajectory correction leads to a more accurate map. On the otherhand, the accuracy of the full trajectory is important when it is used to build an integrated world model,e.g., by projecting the 3D point clouds obtained (see Computing depth images and point clouds, Section6.1.2.2) into a common coordinate frame. The full trajectory can be requested from the SLAM modulefor this purpose.
6.2.4.1 Usage

The SLAM module can be activated at any time, either via the rc_dynamics interface (see the documen-tation of the respective Services, Section 6.2.1.4) or from the Dynamics page of the Web GUI (Section7.1).
The pose estimate of the SLAM module will be initialized with the current estimate of the stereo INS -and thus the origin will be where the stereo INS was started.
Since the SLAM module builds on the motion estimates of the stereo INS module, the latter will auto-matically be started up if it is not yet running when SLAM is started.
When the SLAM module is running, the corrected pose estimates will be available via the datastreams
pose, pose_rt, and dynamics of the rc_dynamics module.
The full trajectory is available through the service get_trajectory, see Services (Section 6.2.4.5) belowfor details.
To store the feature map on the rc_visard, the SLAM module provides the service save_map, which canbe used only during runtime (state “RUNNING”) or after stopping (state “HALTED”).
A stored map can be loaded before startup using the service load_map, which is only applicable in state“IDLE” (use the reset service to go back to “IDLE” when SLAM is in state “HALTED”). Note that mistakenlocalization at (visually) similar places may happen more easily when initially localizing in a loaded mapthan when localizing during continuous operation. Choosing a starting point with a unique visual ap-pearance avoids this problem. The SLAM module will therefore assume that the rc_visard is started in

Basler AGManual: rc_visard 70 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

the rough vicinity (a few meters) of the origin of the map. The origin of the map is where the Stereo-INSmodule was started when the map was recorded.
6.2.4.2 Memory limitations

In contrast to the other software modules running on the rc_visard, the SLAM module needs to accu-mulate data over time, e.g., motion measurements and image features. Further, the optimization of thetrajectory requires substantial amounts of memory, particularly when closing large loops. Therefore thememory requirements of the SLAM module increase over time.
Given the memory limitations of the hardware, the SLAM module needs to reduce its own memory foot-print when running continuously. When the available memory runs low, the SLAM module will fix partsof the trajectory, i.e. no further optimization will be done on these parts. A minimum of 10 minutes ofthe trajectory will be kept unfixed at all times.
When the available memory runs low despite the above measures, two options are available. The firstoption is that the SLAM module automatically goes to the HALTED state, where it stops processing, butthe trajectory (up to the stopping time) is still available. This is the default behavior.
The second option is to keep running until the memory is exhausted. In that case, the SLAMmodule willbe restarted. If the autorecovery parameter is set to true, the SLAM module will recover its previousposition and resume mapping. Otherwise it will go to FATAL state, requiring to be restarted via therc_dynamics interface (see Services, Section 6.2.1.4).
The operation time until thememory limit is reached is strongly dependent on the trajectory of the sensor.
Warning: Because of the memory limitations, it is not recommended to run SLAM at the same timeas Stereo matching in full resolution, because the memory available to SLAM will be greatly reduced.In the worst case, a long running SLAM process may even be forcefully reset, when full-resolutionstereo matching is turned on.

6.2.4.3 Parameters

The SLAM module is called rc_slam in the REST-API. The user can change the SLAM parameters usingthe REST-API interface (Section 7.3).
Parameter overview

This module offers the following run-time parameters:
Table 6.13: The rc_slam module’s run-time parameters

Name Type Min Max Default Description
autorecovery bool false true true In case of fatal errors recover correctedposition and restart mapping
halt_on_low_memory bool false true true When the memory runs low, go to haltedstate

6.2.4.4 Status values

This module reports the following status values:

Basler AGManual: rc_visard 71 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

Table 6.14: The rc_slam module’s status values
Name Description
map_frames Number of frames that constitute the map
state The current state of the rc_slam node
trajectory_poses Number of poses in the estimated trajectory

The reported state can take one of the following values.
Table 6.15: Possible states of the rc_slam module

State name DescriptionIDLE The module is ready, but idle. No trajectory data is available.WAITING_FOR_DATA The module was started but is waiting for data from stereo INS or VO.RUNNING The module is running.HALTED The module is stopped. The trajectory data is still available. No newinformation is processed.RESETTING The module is being stopped and the internal data is being cleared.RESTARTING The module is being restarted.FATAL A fatal error has occurred.

6.2.4.5 Services

Note: Activation and deactivation of the SLAM module is done via the service interface ofrc_dynamics (see Services, Section 6.2.1.4).
Each service response (except for the reset service) contains a return_code, which consists of a
value plus an optional message. A successful service returns with a return_code value of 0. Nega-tive return_code values indicate that the service failed. Positive return_code values indicate that theservice succeeded with additional information.
The SLAM module offers the following services.
get_trajectory

returns the trajectory.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_slam/services/get_trajectory

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_slam/services/get_trajectory

Request

The service arguments allow to select a subsection of the trajectory by defining a start_timeand an end_time. Both are optional, i.e., they could be left empty or filled with zero values,which results in the subsection to include the trajectory from the very beginning, or to thevery end, respectively, or both. If not empty or zero, they can be defined either as absolutetimestamps or to be relative to the trajectory (start_time_relative and end_time_relativeflags). If defined to be relative, the values’ signs indicate to which point in time they relateto: Positive values define an offset to the start time of the trajectory; negative values are

Basler AGManual: rc_visard 72 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

interpreted as an offset from the end time of the trajectory. The below diagram illustratesthree examples for the relative parameterization.

rc_slam
started

rc_slam
stopped

Time (hh:mm:ss)

Whole trajectory

+60s

+15s

– 60s

+15s
–15s

Selected subset

–15s

1
2:

0
0:

00

12
:0

0:
15

1
2:

0
1:

00

12
:0

1:
15

start_time

end_time

Parameters
(relative)

Fig. 6.8: Examples for combinations of relative start and end times for the get_trajectory service. Allcombinations shown select the same subset of the trajectory.

Note: A relative start_time of zero will select everything from the start of the trajectory,whereas a relative end_time of zero will select everything to the end of the trajectory.Absolute zero values effectively do the same, so one can set all values zero to get the fulltrajectory.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"end_time": {
"nsec": "int32",
"sec": "int32"

},
"end_time_relative": "bool",
"start_time": {
"nsec": "int32",
"sec": "int32"

},
"start_time_relative": "bool"

}
}

Response

The field producer indicates where the trajectory data comes from and is always slam.
The field return_code holds possible warnings or error codes and messages. The followingtable contains a list of possible return_code values:

Basler AGManual: rc_visard 73 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

Code Description0 Success-1 An invalid argument was provided (e.g., an invalid time range)101 Trajectory is empty, because there is no data in the given time range102 Trajectory is empty, because there is no data at all (e.g., when SLAM is IDLE)
The definition for the response with corresponding datatypes is:
{

"name": "get_trajectory",
"response": {
"return_code": {
"message": "string",
"value": "int16"

},
"trajectory": {
"name": "string",
"parent": "string",
"poses": [

{
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

],
"producer": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}
}

save_map

stores the current state as a map to persistent memory. The map consists of a set of fixedmap frames. It does not contain the full trajectory that has been covered.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_slam/services/save_map

Basler AGManual: rc_visard 74 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_slam/services/save_map

Note: Only abstract feature positions and descriptions are stored in the map. No actualfootage of the cameras is stored with the map, nor is it possible to reconstruct images orimage parts from the stored information.

Warning: The map is lost on software updates or rollbacks
Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "save_map",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

load_map

loads a previously saved map.
Details

This is only applicable when the SLAM module is IDLE. It is not possible to load a map intoa running system. A loaded map can be cleared with the reset service call.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_slam/services/load_map

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_slam/services/load_map

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "load_map",
"response": {

"return_code": {
"message": "string",
"value": "int16"

(continues on next page)

Basler AGManual: rc_visard 75 Rev: 24.01.1Status: Jan 29, 2024

6.2. Navigation modules

(continued from previous page)
}

}
}

remove_map

removes the stored map from the persistent memory.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_slam/services/remove_map

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_slam/services/remove_map

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "remove_map",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset

clears the internal state of the SLAM module.
Details

This service is to be used after stopping the SLAM module using the rc_dynamics interface(see the respective Services, Section 6.2.1.4). The SLAM module maintains the estimateof the full trajectory even when stopped. This service clears this estimate and frees therespective memory. The returned status is RESETTING.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_slam/services/reset

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_slam/services/reset

Basler AGManual: rc_visard 76 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

6.3 Detection modules

The rc_visard offers software modules for different detection applications:
• LoadCarrier (rc_load_carrier, Section 6.3.1) allows detecting load carriers and their filling lev-els.
• TagDetect (rc_april_tag_detect and rc_qr_code_detect, Section 6.3.2) allows the detectionof AprilTags and QR codes, as well as the estimation of their poses.
• ItemPick and BoxPick (rc_itempick and rc_boxpick, Section 6.3.3) provides an out-of-the-boxperception solution for robotic pick-and-place applications of unknown objects or boxes.
• SilhouetteMatch (rc_silhouettematch, Section 6.3.4) provides an object detection solution forobjects placed on a plane or stacked planar objects.

These modules are optional and can be activated by purchasing a separate license (Section 8.7).

6.3.1 LoadCarrier

6.3.1.1 Introduction

The LoadCarriermodule allows the detection of load carriers, which is usually the first stepwhen objectsor grasp points inside a bin should be found. The models of the load carriers to be detected have to bedefined in the LoadCarrierDB (Section 6.5.1) module.
The LoadCarrier module is an optional on-board module of the rc_visard and is licensed with any of themodules ItemPick and BoxPick (Section 6.3.3) or SilhouetteMatch (Section 6.3.4). Otherwise it requiresa separate LoadCarrier license (Section 8.7) to be purchased.
6.3.1.2 Detection of load carriers

The load carrier detection algorithm detects load carriers thatmatch a specific load carrier model, whichmust be defined in the LoadCarrierDB (Section 6.5.1) module. The load carrier model is referenced by itsID, which is passed to the load carrier detection. The detection of a load carrier is based on the detectionof its rectangular rim. For this, it uses lines detected in the left camera image and the depth values ofthe load carrier rim. Thus, the rim should form a contrast to the background and the disparity imagemust be dense on the rim.
If multiple load carriers of the specified load carrier ID are visible in the scene, all of themwill be detectedand returned by the load carrier detection.

Basler AGManual: rc_visard 77 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

By default, when assume_gravity_aligned is true and gravitymeasurements are available, the algorithmsearches for load carriers whose rim planes are perpendicular to the measured gravity vector. To de-tect tilted load carriers, assume_gravity_aligned must be set to false or the load carrier’s approximateorientation must be specified as pose and the pose_type should be set to ORIENTATION_PRIOR.
Load carriers can be detected at a distance of up to 3 meters from the camera.
When a 3D region of interest (see RoiDB, Section 6.5.2) is used to limit the volume in which load carriersshould be detected, only the load carriers’ rims must be fully included in the region of interest.
The detection algorithm returns the poses of the load carriers’ origins (see Load carrier definition, Section6.5.1.2) in the desired pose frame.
The detection functionality also determines if the detected load carriers are overfilled, which means,that objects protrude from the plane defined by the load carrier’s outer part of the rim.

x
z

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

y
z

rim
_th

ick
ne
ss
.y

rim_thickness.x

x
y

Fig. 6.9: Load carrier models and reference frames

6.3.1.3 Detection of filling level

The LoadCarrier module offers the detect_filling_level service to compute the filling level of all de-tected load carriers.
The load carriers are subdivided into a configurable number of cells in a 2D grid. The maximum numberof cells is 10x10. For each cell, the following values are reported:

• level_in_percent: minimum, maximum and mean cell filling level in percent from the load carrierfloor. These values can be larger than 100% if the cell is overfilled.
• level_free_in_meters: minimum, maximum and mean cell free level in meters from the loadcarrier rim. These values can be negative if the cell is overfilled.
• cell_size: dimensions of the 2D cell in meters.
• cell_position: position of the cell center in meters (either in camera or external frame, seeHand-
eye calibration, Section 6.3.1.4). The z-coordinate is on the level of the load carrier rim.

• coverage: represents the proportion of valid pixels in this cell. It varies between 0 and 1 with stepsof 0.1. A low coverage indicates that the cell contains several missing data (i.e. only a few pointswere actually measured in this cell).
These values are also calculated for the whole load carrier itself. If no cell subdivision is specified, onlythe overall filling level is computed.

Basler AGManual: rc_visard 78 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Fig. 6.10: Visualizations of the load carrier filling level: overall filling level without grid (left), 4x3 grid(center), 8x8 grid (right). The load carrier content is shown in a green gradient from white (on the loadcarrier floor) to dark green. The overfilled regions are visualized in red. Numbers indicate cell IDs.

6.3.1.4 Interaction with other modules

Internally, the LoadCarrier module depends on, and interacts with other on-board modules as listed be-low.
Note: All changes and configuration updates to these modules will affect the performance of theLoadCarrier module.

Stereo camera and Stereo matching

The LoadCarrier module makes internally use of the following data:
• Rectified images from the Camera module (rc_camera, Section 6.1.1);
• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,Section 6.1.2).

All processed images are guaranteed to be captured after the module trigger time.
IO and Projector Control

In case the rc_visard is used in conjunctionwith an external randomdot projector and the IO andProjector
Control module (rc_iocontrol, Section 6.4.4), it is recommended to connect the projector to GPIO Out1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matching pa-
rameters, Section 6.1.2.5), so that on each image acquisition trigger an image with and without projectorpattern is acquired.
Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive(see Description of run-time parameters, Section 6.4.4.1).
In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize theexposure of both images (see Stereo camera parameters, Section 6.1.1.3).
No additional changes are required to use the LoadCarrier module in combination with a random dotprojector.
Hand-eye calibration

In case the camera has been calibrated to a robot, the loadcarrier module can automatically provideposes in the robot coordinate frame. For the loadcarrier nodes’ Services (Section 6.3.1.7), the frame ofthe output poses can be controlled with the pose_frame argument.
Two different pose_frame values can be chosen:

Basler AGManual: rc_visard 79 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no priorknowledge about the pose of the camera in the environment is required. This means that the con-figured load carriers move with the camera. It is the user’s responsibility to update the configuredposes if the camera frame moves (e.g. with a robot-mounted camera).
2. External frame (external). All poses provided by themodules are in the external frame, configuredby the user during the hand-eye calibration process. The module relies on the on-board Hand-eye

calibration module (Section 6.4.1) to retrieve the sensor mounting (static or robot mounted) andthe hand-eye transformation. If the mounting is static, no further information is needed. If thesensor is robot-mounted, the robot_pose is required to transform poses to and from the externalframe.
Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.
6.3.1.5 Parameters

The LoadCarrier module is called rc_load_carrier in the REST-API and is represented in the Web
GUI (Section 7.1) under Modules → LoadCarrier. The user can explore and configure the LoadCarriermodule’s run-time parameters, e.g. for development and testing, using the Web GUI or the REST-API
interface (Section 7.3).
Parameter overview

This module offers the following run-time parameters:
Table 6.16: The rc_load_carrier module’s run-time parameters

Name Type Min Max Default Description
assume_gravity_aligned bool false true true When true, onlygravity-aligned loadcarriers are detected, ifgravity measurement isavailable.
crop_distance float64 0.0 0.05 0.005 Safety margin in metersby which the load carrierinner dimensions arereduced to define theregion of interest fordetection
min_plausibility float64 0.0 0.99 0.8 Indicates how much ofthe plane surrounding theload carrier rim must befree to count as validdetection
model_tolerance float64 0.003 0.025 0.008 Indicates how much theestimated load carrierdimensions are allowedto differ from the loadcarrier model dimensionsin meters

Basler AGManual: rc_visard 80 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Description of run-time parameters

Each run-time parameter is represented by a row on the LoadCarrier Settings section of the Web GUI’s
LoadCarrier page under Modules. The name in the Web GUI is given in brackets behind the parametername and the parameters are listed in the order they appear in theWeb GUI. The parameters are prefixedwith load_carrier_ when they are used outside the rc_load_carrier module from another detectionmodule using the REST-API interface (Section 7.3).
assume_gravity_aligned (Assume Gravity Aligned)

If this parameter is set to true, then only load carriers without tilt will be detected. This canspeed up the detection. If this parameter is set to false, tilted load carriers will also be de-tected.
This parameter is ignored for load carriers with an orientation prior.

model_tolerance (Model Tolerance)

indicates how much the estimated load carrier dimensions are allowed to differ from theload carrier model dimensions in meters.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/parameters?model_tolerance=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?model_tolerance=<value>

crop_distance (Crop Distance)

sets the safety margin in meters by which the load carrier’s inner dimensions are reduced todefine the region of interest for detection (ref. Fig. 6.41).
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/parameters?crop_distance=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?crop_distance=<value>

min_plausibility (Minimum Plausibility):

The minimum plausibility defines how much of the plane around the load carrier rim mustat least be free to count as valid detection. Increase the minimal plausibility to reject falsepositive detections and decrease the value in case a clearly visible load carrier cannot bedetected.
Via the REST-API, this parameter can be set as follows.
API version 2

Basler AGManual: rc_visard 81 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/parameters?min_plausibility=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/parameters?min_plausibility=<value>

6.3.1.6 Status values

The LoadCarrier module reports the following status values:
Table 6.17: The rc_load_carrier module’s status values

Name Description
data_acquisition_time Time in seconds required to acquire image pair
last_timestamp_processed The timestamp of the last processed image pair
load_carrier_detection_time Processing time of the last detection in seconds

6.3.1.7 Services

The user can explore and call the LoadCarrier module’s services, e.g. for development and testing, usingthe REST-API interface (Section 7.3) or the rc_visard Web GUI (Section 7.1) on the LoadCarrier page under
Modules.
The LoadCarrier module offers the following services.
detect_load_carriers

Triggers a load carrier detection as described in Detection of load carriers (Section 6.3.1.2).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/services/detect_load_

→˓carriers

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_load_carriers

Request

Required arguments:
pose_frame: see Hand-eye calibration (Section 6.3.1.4).
load_carrier_ids: IDs of the load carriers which should be detected. Currentlyonly one ID can be specified.

Potentially required arguments:
robot_pose: see Hand-eye calibration (Section 6.3.1.4).

Optional arguments:
region_of_interest_id: ID of the 3D region of interest where to search for theload carriers.

Basler AGManual: rc_visard 82 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

region_of_interest_2d_id: ID of the 2D region of interest where to search for theload carriers.
Note: Only one type of region of interest can be set.

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"load_carrier_ids": [
"string"

],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers.
timestamp: timestamp of the image set the detection ran on.
return_code: holds possible warnings or error codes and messages.
The definition for the response with corresponding datatypes is:
{

"name": "detect_load_carriers",
"response": {
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",

(continues on next page)

Basler AGManual: rc_visard 83 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {
"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

detect_filling_level

Triggers a load carrier filling level detection as described in Detection of filling level (Section6.3.1.3).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/services/detect_filling_

→˓level

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/detect_filling_level

Request

Required arguments:
pose_frame: see Hand-eye calibration (Section 6.3.1.4).
load_carrier_ids: IDs of the load carriers which should be detected. Currentlyonly one ID can be specified.

Potentially required arguments:
robot_pose: see Hand-eye calibration (Section 6.3.1.4).

Basler AGManual: rc_visard 84 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Optional arguments:
filling_level_cell_count: Number of cells in the filling level grid.
region_of_interest_id: ID of the 3D region of interest where to search for theload carriers.
region_of_interest_2d_id: ID of the 2D region of interest where to search for theload carriers.
Note: Only one type of region of interest can be set.

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"filling_level_cell_count": {
"x": "uint32",
"y": "uint32"

},
"load_carrier_ids": [

"string"
],
"pose_frame": "string",
"region_of_interest_2d_id": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers and their filling levels.
timestamp: timestamp of the image set the detection ran on.
return_code: holds possible warnings or error codes and messages.
The definition for the response with corresponding datatypes is:
{

"name": "detect_filling_level",
"response": {

"load_carriers": [
{

"cells_filling_levels": [
{
"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},

(continues on next page)

Basler AGManual: rc_visard 85 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {
"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
}

],
"filling_level_cell_count": {

"x": "uint32",
"y": "uint32"

},
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overall_filling_level": {

"cell_position": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cell_size": {
"x": "float64",
"y": "float64"

},
"coverage": "float64",
"level_free_in_meters": {

"max": "float64",
"mean": "float64",
"min": "float64"

},
"level_in_percent": {
"max": "float64",
"mean": "float64",
"min": "float64"

}
},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",

(continues on next page)

Basler AGManual: rc_visard 86 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {
"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_load_carrier/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_load_carrier/services/reset_defaults

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",

(continues on next page)

Basler AGManual: rc_visard 87 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"value": "int16"

}
}

}

set_load_carrier (deprecated)

Persistently stores a load carrier on the rc_visard.
API version 2

This service is not available in API version 2. Use set_load_carrier (Section 6.5.1.5) in
rc_load_carrier_db instead.
API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_load_carrier

The definitions of the request and response are the same as described in
set_load_carrier (Section 6.5.1.5) in rc_load_carrier_db.

get_load_carriers (deprecated)

Returns the configured load carriers with the requested load_carrier_ids.
API version 2

This service is not available in API version 2. Use get_load_carriers (Section 6.5.1.5) in
rc_load_carrier_db instead.
API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_load_carriers

The definitions of the request and response are the same as described in
get_load_carriers (Section 6.5.1.5) in rc_load_carrier_db.

delete_load_carriers (deprecated)

Deletes the configured load carriers with the requested load_carrier_ids.
API version 2

This service is not available in API version 2. Use delete_load_carriers (Section 6.5.1.5) in
rc_load_carrier_db instead.
API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_load_carriers

The definitions of the request and response are the same as described in
delete_load_carriers (Section 6.5.1.5) in rc_load_carrier_db.

Basler AGManual: rc_visard 88 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

set_region_of_interest (deprecated)

Persistently stores a 3D region of interest on the rc_visard.
API version 2

This service is not available in API version 2. Use set_region_of_interest (Section 6.5.2.4) in
rc_roi_db instead.
API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest

The definitions of the request and response are the same as described in
set_region_of_interest (Section 6.5.2.4) in rc_roi_db.

get_regions_of_interest (deprecated)

Returns the configured 3D regions of interest with the requested region_of_interest_ids.
API version 2

This service is not available in API version 2. Use get_regions_of_interest (Section 6.5.2.4) in
rc_roi_db instead.
API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_regions_of_interest

The definitions of the request and response are the same as described in
get_regions_of_interest (Section 6.5.2.4) in rc_roi_db.

delete_regions_of_interest (deprecated)

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.
API version 2

This service is not available in API version 2. Use delete_regions_of_interest (Section 6.5.2.4)in rc_roi_db instead.
API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest

The definitions of the request and response are the same as described in
delete_regions_of_interest (Section 6.5.2.4) in rc_roi_db.

set_region_of_interest_2d (deprecated)

Persistently stores a 2D region of interest on the rc_visard.
API version 2

This service is not available in API version 2. Use set_region_of_interest_2d (Section 6.5.2.4)in rc_roi_db instead.

Basler AGManual: rc_visard 89 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_load_carrier/services/set_region_of_interest_2d

The definitions of the request and response are the same as described in
set_region_of_interest_2d (Section 6.5.2.4) in rc_roi_db.

get_regions_of_interest_2d (deprecated)

Returns the configured 2D regions of interest with the requested
region_of_interest_2d_ids.
API version 2

This service is not available in API version 2. Use get_regions_of_interest_2d (Section 6.5.2.4)in rc_roi_db instead.
API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_load_carrier/services/get_region_of_interest_2d

The definitions of the request and response are the same as described in
get_regions_of_interest_2d (Section 6.5.2.4) in rc_roi_db.

delete_regions_of_interest_2d (deprecated)

Deletes the configured 2D regions of interest with the requested
region_of_interest_2d_ids.
API version 2

This service is not available in API version 2. Use delete_regions_of_interest_2d (Section6.5.2.4) in rc_roi_db instead.
API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_load_carrier/services/delete_regions_of_interest_2d

The definitions of the request and response are the same as described in
delete_regions_of_interest_2d (Section 6.5.2.4) in rc_roi_db.

6.3.1.8 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. Asuccessful service returns with a return_code value of 0. Negative return_code values indicate that theservice failed. Positive return_code values indicate that the service succeeded with additional informa-tion. The smaller value is selected in case a service has multiple return_code values, but all messagesare appended in the return_code message.
The following table contains a list of common codes:

Basler AGManual: rc_visard 90 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Table 6.18: Return codes of the LoadCarrier module’s services
Code Description0 Success-1 An invalid argument was provided-4 Data acquisition took longer than allowed-10 New element could not be added as the maximum storage capacity of load carriers hasbeen exceeded-11 Sensor not connected, not supported or not ready-302 More than one load carrier provided to the detect_load_carriers or

detect_filling_level services, but only one is supported3 The detection timeout during load carrier detection has been reached. Consider reducingthe model tolerance.10 The maximum storage capacity of load carriers has been reached11 An existent persistent model was overwritten by the call to set_load_carrier100 The requested load carriers were not detected in the scene102 The detected load carrier has no points inside300 A valid robot_pose was provided as argument but it is not required

6.3.2 TagDetect

6.3.2.1 Introduction

The TagDetect modules are optional on-board modules of the rc_visard and require separate licenses(Section 8.7) to be purchased. The licenses are included in every rc_visard purchased after 01.07.2020.
The TagDetect modules run on board the rc_visard and allow the detection of 2D matrix codes andtags. Currently, there are TagDetect modules for QR codes and AprilTags. The modules, furthermore,compute the position and orientation of each tag in the 3D camera coordinate system, making it simpleto manipulate a tag with a robot or to localize the camera with respect to a tag.
Tag detection is made up of three steps:

1. Tag reading on the 2D image pair (see Tag reading, Section 6.3.2.2).
2. Estimation of the pose of each tag (see Pose estimation, Section 6.3.2.3).
3. Re-identification of previously seen tags (see Tag re-identification, Section 6.3.2.4).

In the following, the two supported tag types are described, followed by a comparison.
QR code

Fig. 6.11: Sample QR code

Basler AGManual: rc_visard 91 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

QR codes are two-dimensional matrix codes that contain arbitrary user-defined data. There is widesupport for decoding of QR codes on commodity hardware such as smartphones. Also, many onlineand offline tools are available for the generation of such codes.
The “pixels” of a QR code are called modules. Appearance and resolution of QR codes change with theamount of data they contain. While the special patterns in the three corners are always 7 modules wide,the number ofmodules between them increases themore data is stored. The lowest-resolution QR codeis of size 21x21 modules and can contain up to 152 bits.
Even though many QR code generation tools support generation of specially designed QR codes (e.g.,containing a logo, having round corners, or having dots as modules), a reliable detection of these tagsby the rc_visard’s TagDetect module is not guaranteed. The same holds for QR codes which containcharacters that are not part of regular ASCII.
AprilTag

Fig. 6.12: A 16h5 tag (left), a 36h11 tag (center) and a 41h12 tag (right). AprilTags consist of a mandatorywhite (a) and black (b) border and a variable amount of data bits (c).
AprilTags are similar to QR codes. However, they are specifically designed for robust identification atlarge distances. As for QR codes, we will call the tag pixels modules. Fig. 6.12 shows how AprilTagsare structured. They have a mandatory white and black border, each one module wide. The tag families16h5, 25h9, 36h10 and 36h11 are surrounded by this border and carry a variable amount of data modulesin the center. For tag family 41h12, the black and white border is shifted towards the inside and the datamodules are in the center and also at the border of the tags. Other than QR codes, AprilTags do notcontain any user-defined information but are identified by a predefined family and ID. The tags in Fig.6.12 for example are of family 16h5, 36h11 and 41h12 have id 0, 11 and 0, respectively. All supportedfamilies are shown in Table 6.19.

Table 6.19: AprilTag families
Family Number of tag IDs Recommended16h5 30 -25h9 35 o36h10 2320 o36h11 587 +41h12 2115 +

For each family, the number before the “h” states the number of datamodules contained in the tag: Whilea 16h5 tag contains 16 (4x4) data modules ((c) in Fig. 6.12), a 36h11 tag contains 36 (6x6) modules and a41h12 tag contains 41 (3x3 inner + 4x8 outer)modules. The number behind the “h” refers to the Hammingdistance between two tags of the same family. The higher, themore robust is the detection, but the fewerindividual tag IDs are available for the same number of data modules (see Table 6.19).
Basler AGManual: rc_visard 92 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

The advantage of fewer modules (as for 16h5 compared to 36h11) is the lower resolution of the tag.Hence, each tag module is larger and the tag therefore can be detected from a larger distance. This,however, comes at a price: Firstly, fewer data modules lead to fewer individual tag IDs. Secondly, andmore importantly, detection robustness is significantly reduced due to a higher false positive rate; i.e,tags are mixed up or nonexistent tags are detected in random image texture or noise. The 41h12 familyhas its border shifted towards the inside, which gives it more data modules at a lower number of totalmodules compared to the 36h11 family.
For these reasons we recommend using the 41h12 and 36h11 families and highly discourage the use ofthe 16h5 family. The latter family should only be used if a large detection distance really is necessary foran application. However, the maximum detection distance increases only by approximately 25% whenusing a 16h5 tag instead of a 36h11 tag.
Pre-generated AprilTags can be downloaded at the AprilTag project website (https://april.eecs.umich.edu/software/apriltag.html). There, each family consists of multiple PNGs containing single tags. Eachpixel in the PNGs corresponds to one AprilTag module. When printing the tags of the families 36h11,36h10, 25h9 and 16h5 special care must be taken to also include the white border around the tag thatis contained in the PNG (see (a) in Fig. 6.12). Moreover, all tags should be scaled to the desired printingsize without any interpolation, so that the sharp edges are preserved.
Comparison

Both QR codes and AprilTags have their up and down sides. While QR codes allow arbitrary user-defineddata to be stored, AprilTags have a pre-defined and limited set of tags. On the other hand, AprilTags havea lower resolution and can therefore be detected at larger distances. Moreover, the continuous white toblack border in AprilTags allow for more precise pose estimation.
Note: If user-defined data is not required, AprilTags should be preferred over QR codes.

6.3.2.2 Tag reading

The first step in the tag detection pipeline is reading the tags on the 2D image pair. This step takes mostof the processing time and its precision is crucial for the precision of the resulting tag pose. To controlthe speed of this step, the quality parameter can be set by the user. It results in a downscaling ofthe image pair before reading the tags. High yields the largest maximum detection distance and highestprecision, but also the highest processing time. Low results in the smallest maximum detection distanceand lowest precision, but processing requires less than half of the time. Medium lies in between. Pleasenote that this quality parameter has no relation to the quality parameter of Stereo matching (Section6.1.2).

Basler AGManual: rc_visard 93 Rev: 24.01.1Status: Jan 29, 2024

https://april.eecs.umich.edu/software/apriltag.html
https://april.eecs.umich.edu/software/apriltag.html

6.3. Detection modules

Fig. 6.13: Visualization of module size 𝑠, size of a tag in modules 𝑟, and size of a tag in meters 𝑡 forAprilTags (left and center) and QR codes (right)
Themaximumdetection distance 𝑧 at quality High can be approximated by using the following formulae,

𝑧 =
𝑓𝑠

𝑝
,

𝑠 =
𝑡

𝑟
,

where 𝑓 is the focal length (Section 6.1.1.1) in pixels and 𝑠 is the size of a module in meters. 𝑠 can easilybe calculated by the latter formula, where 𝑡 is the size of the tag in meters and 𝑟 is the width of the codein modules (for AprilTags without the white border). Fig. 6.13 visualizes these variables. 𝑝 denotes thenumber of image pixels per module required for detection. It is different for QR codes and AprilTags.Moreover, it varies with the tag’s angle to the camera and illumination. Approximate values for robustdetection are:
• AprilTag: 𝑝 = 5 pixels/module
• QR code: 𝑝 = 6 pixels/module

The following tables give sample maximum distances for different situations, assuming a focal lengthof 1075 pixels and the parameter quality to be set to High.
Table 6.20: Maximum detection distance examples for AprilTagswith a width of 𝑡 = 4 cm

AprilTag family Tag width Maximum distance36h11 (recommended) 8 modules 1.1 m16h5 6 modules 1.4 m41h12 (recommended) 5 modules 1.7 m

Table 6.21: Maximum detection distance examples for QR codeswith a width of 𝑡 = 8 cm
Tag width Maximum distance29 modules 0.49 m21 modules 0.70 m

6.3.2.3 Pose estimation

For each detected tag, the pose of this tag in the camera coordinate frame is estimated. A requirementfor pose estimation is that a tag is fully visible in the left and right camera image. The coordinate frame
Basler AGManual: rc_visard 94 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

of the tag is aligned as shown below.

Fig. 6.14: Coordinate frames of AprilTags (left and center) and QR codes (right)
The z-axis is pointing “into” the tag. Please note that for AprilTags, although having the white borderincluded in their definition, the coordinate system’s origin is placed exactly at the transition from thewhite to the black border. Since AprilTags do not have an obvious orientation, the origin is defined asthe upper left corner in the orientation they are pre-generated in.
During pose estimation, the tag’s size is also estimated, while assuming the tag to be square. For QRcodes, the size covers the full tag. For AprilTags, the size covers only the part inside the border definedby the transition from the black to the white border modules, hence ignoring the outermost white borderfor the tag families 16h5, 25h9, 36h10 and 36h11.
The user can also specify the approximate size (±10%) of tags with a specific ID. All tags not matchingthis size constraint are automatically filtered out. This information is further used to resolve ambiguitiesin pose estimation that may arise if multiple tags with the same ID are visible in the left and right imageand these tags are aligned in parallel to the image rows.
Note: For best pose estimation results one should make sure to accurately print the tag and to attachit to a rigid and as planar as possible surface. Any distortion of the tag or bump in the surface willdegrade the estimated pose.
Note: It is highly recommended to set the approximate size of a tag. Otherwise, if multiple tags withthe same ID are visible in the left or right image, pose estimation may compute a wrong pose if thesetags have the same orientation and are approximately aligned in parallel to the image rows. However,even if the approximate size is not given, the TagDetect modules try to detect such situations andfilter out affected tags.

Below tables give approximate precisions of the estimated poses of AprilTags. We distinguish betweenlateral precision (i.e., in x and y direction) and precision in z direction. It is assumed that quality is setto High, that the camera’s viewing direction is parallel to the tag’s normal and that the images are wellexposed and do not suffer from motion blur. The size of a tag does not have a significant effect on thelateral or z precision; however, in general, larger tags improve precision. With respect to precision of theorientation especially around the x and y axes, larger tags clearly outperform smaller ones.
Table 6.22: Approximate position precision for AprilTag detectionswith High quality in an ideal scenario for different base lines

Distance rc_visard 65 - lateral rc_visard 65 - z rc_visard 160 - lateral rc_visard 160 - z0.5 m 0.05 mm 0.5 mm 0.05 mm 0.3 mm1.0 m 0.15 mm 1.8 mm 0.15 mm 1.4 mm2.0 m 1.5 mm 14.5 mm 0.5 mm 3.7 mm

Basler AGManual: rc_visard 95 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Table 6.23: Approximate orientation precision for AprilTag detec-tions with High quality in an ideal scenario for different tag sizes
Distance 60 x 60 mm 120 x 120 mm0.5 m 0.2° –1.0 m 0.8° 0.3°2.0 m 2.0° 0.8°3.0 m – 1.8°

6.3.2.4 Tag re-identification

Each tag has an ID; for AprilTags it is the family plus tag ID, for QR codes it is the contained data. However,these IDs are not unique, since the same tag may appear multiple times in a scene.
For distinction of these tags, the TagDetect modules also assign each detected tag a unique identifier.To help the user identifying an identical tag over multiple detections, tag detection tries to re-identifytags; if successful, a tag is assigned the same unique identifier again.
Tag re-identification compares the positions of the corners of the tags in a static coordinate frame to findidentical tags. Tags are assumed identical if they did not or only slightly move in that static coordinateframe. For that static coordinate frame to be available, dynamic-state estimation (Section 6.2.1) mustbe switched on. If it is not, the sensor is assumed to be static; tag re-identification will then not workacross sensor movements.
By setting the max_corner_distance threshold, the user can specify how much a tag is allowed move inthe static coordinate frame between two detections to be considered identical. This parameter definesthe maximum distance between the corners of two tags, which is shown in Fig. 6.15. The Euclideandistances of all four corresponding tag corners are computed in 3D. If none of these distances exceedsthe threshold, the tags are considered identical.

Fig. 6.15: Simplified visualization of tag re-identification. Euclidean distances between associated tagcorners in 3D are compared (red arrows).
After a number of tag detection runs, previously detected tag instances will be discarded if they are notdetected in the meantime. This can be configured by the parameter forget_after_n_detections.
6.3.2.5 Hand-eye calibration

In case the camera has been calibrated to a robot, the TagDetect module can automatically provideposes in the robot coordinate frame. For the TagDetect node’s Services (Section 6.3.2.8), the frame ofthe output poses can be controlled with the pose_frame argument.
Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the module are in the camera frame.
Basler AGManual: rc_visard 96 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

2. External frame (external). All poses provided by the module are in the external frame, configuredby the user during the hand-eye calibration process. The module relies on the on-board Hand-eye
calibration module (Section 6.4.1) to retrieve the sensor mounting (static or robot mounted) andthe hand-eye transformation. If the sensor mounting is static, no further information is needed.If the sensor is robot-mounted, the robot_pose is required to transform poses to and from the
external frame.

All pose_frame values that are not camera or external are rejected.
6.3.2.6 Parameters

There are two separate modules available for tag detection, one for detecting AprilTags and one forQR codes, named rc_april_tag_detect and rc_qr_code_detect, respectively. Apart from the modulenames they share the same interface definition.
In addition to the REST-API interface (Section 7.3), the TagDetect modules provide pages on the WebGUI under Modules → AprilTag and Modules → QR Code, on which they can be tried out and configuredmanually.
In the following, the parameters are listed based on the example of rc_qr_code_detect. They are thesame for rc_april_tag_detect.
This module offers the following run-time parameters:

Table 6.24: The rc_qr_code_detectmodule’s run-time parameters
Name Type Min Max Default Description
detect_inverted_tags bool false true false Detect tags with blackand white exchanged
forget_after_n_detections int32 1 1000 30 Number of detectionruns after which toforget about a previoustag during tagre-identification
max_corner_distance float64 0.001 0.01 0.005 Maximum distance ofcorresponding tagcorners in meters duringtag re-identification
quality string - - High Quality of tag detection:[Low, Medium, High]
use_cached_images bool false true false Use most recentlyreceived image pairinstead of waiting for anew pair

Via the REST-API, these parameters can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓parameters/parameters?<parameter-name>=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/parameters?
→˓<parameter-name>=<value>

6.3.2.7 Status values

The TagDetect modules reports the following status values:
Basler AGManual: rc_visard 97 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Table 6.25: The rc_qr_code_detect and rc_april_tag_detectmodule’s status values
Name Description
data_acquisition_time Time in seconds required to acquire image pair
last_timestamp_processed The timestamp of the last processed image pair
processing_time Processing time of the last detection in seconds
state The current state of the node

The reported state can take one of the following values.
Table 6.26: Possible states of the TagDetect modules

State name DescriptionIDLE The module is idle.RUNNING The module is running and ready for tag detection.FATAL A fatal error has occurred.

6.3.2.8 Services

The TagDetect modules implement a state machine for starting and stopping. The actual tag detectioncan be triggered via detect.
The user can explore and call the rc_qr_code_detect and rc_april_tag_detectmodules’ services, e.g.for development and testing, using the REST-API interface (Section 7.3) or the rc_visardWeb GUI (Section7.1).
detect

Triggers a tag detection.
Details

Depending on the use_cached_images parameter, the module will use the latestreceived image pair (if set to true) or wait for a new pair that is captured after theservice call was triggered (if set to false, this is the default). Even if set to true, tagdetection will never use one image pair twice.
It is recommended to call detect in state RUNNING only. It is also possible to becalled in state IDLE, resulting in an auto-start and stop of the module. This, how-ever, has some drawbacks: First, the call will take considerably longer; second, tagre-identification will not work. It is therefore highly recommended tomanually startthe module before calling detect.
Tags might be omitted from the detect response due to several reasons, e.g., ifa tag is visible in only one of the cameras or if pose estimation did not succeed.These filtered-out tags are noted in the log, which can be accessed as describedin Downloading log files (Section 8.8).
A visualization of the latest detection is shown on the Web GUI tabs of the TagDe-tect modules. Please note that this visualization will only be shown after callingthe detection service at least once. On the Web GUI, one can also manually try thedetection by clicking the Detect button.
Due to changes in system time on the rc_visard there might occur jumps of times-tamps, forward as well as backward (see Time synchronization, Section 7.8). For-ward jumps do not have an effect on the TagDetect module. Backward jumps,however, invalidate already received images. Therefore, in case a backwards timejump is detected, an error of value -102 will be issued on the next detect call, also

Basler AGManual: rc_visard 98 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

to inform the user that the timestamps included in the response will jump back.This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/detect

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/detect

Request

Optional arguments:
tags is the list of tag IDs that the TagDetect module should detect. For QRcodes, the ID is the contained data. For AprilTags, it is “<family>_<id>”, so,e.g., for a tag of family 36h11 and ID 5, it is “36h11_5”. Naturally, the April-Tag module can only be triggered for AprilTags, and the QR code moduleonly for QR codes.
The tags list can also be left empty. In that case, all detected tags willbe returned. This feature should be used only during development and de-bugging of an application. Whenever possible, the concrete tag IDs shouldbe listed, on the one hand avoiding some false positives, on the other handspeeding up tag detection by filtering tags not of interest.
For AprilTags, the user can not only specify concrete tags but also a com-plete family by setting the ID to “<family>”, so, e.g., “36h11”. All tags ofthis family will then be detected. It is further possible to specify multiplecomplete tag families or a combination of concrete tags and completetag families; for instance, triggering for “36h11”, “25h9_3”, and “36h10” atthe same time.
In addition to the ID, the approximate size (±10%) of a tag can be set withthe size parameter. As described inPose estimation (Section 6.3.2.3), thisinformation helps to resolve ambiguities in pose estimation thatmay arisein certain situations.
pose_frame controls whether the poses of the detected tags are re-turned in the camera or external frame, as detailed in Hand-eye calibra-
tion (Section 6.3.2.5). The default is camera.
The definition for the request arguments with corresponding datatypes is:
{
"args": {

"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tags": [

(continues on next page)

Basler AGManual: rc_visard 99 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
{

"id": "string",
"size": "float64"

}
]

}
}

Response

timestamp is set to the timestamp of the image pair the tag detection ran on.
tags contains all detected tags.
id is the ID of the tag, similar to id in the request.
instance_id is the random unique identifier of the tag assigned by tag re-identification.
pose contains position and orientation. The orientation is in quaternion format.
pose_frame is set to the coordinate frame above pose refers to. It will either be“camera” or “external”.
size will be set to the estimated tag size in meters; for AprilTags, the white borderis not included.
return_code holds possible warnings or error codes.
The definition for the response with corresponding datatypes is:
{

"name": "detect",
"response": {
"return_code": {
"message": "string",
"value": "int16"

},
"tags": [

{
"id": "string",
"instance_id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"size": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

],
"timestamp": {

(continues on next page)

Basler AGManual: rc_visard 100 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"nsec": "int32",
"sec": "int32"

}
}

}

start

Starts the module by transitioning from IDLE to RUNNING.
Details

When running, the module receives images from the stereo camera and is ready to performtag detections. To save computing resources, the module should only be running when nec-essary.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/start

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module by transitioning to IDLE.
Details

This transition can be performed from state RUNNING and FATAL. All tag re-identification information is cleared during stopping.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/stop

API version 1 (deprecated)

Basler AGManual: rc_visard 101 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/stop

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "stop",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

restart

Restarts the module.
Details

If in RUNNING or FATAL, the module will be stopped and then started. If in IDLE, themodule will be started.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_

→˓detect>/services/restart

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/restart

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "restart",
"response": {
"accepted": "bool",
"current_state": "string"

}
}

reset_defaults

Resets all parameters of the module to its default values, as listed in above table.
Details

This service can be called as follows.

Basler AGManual: rc_visard 102 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_qr_code_detect|rc_april_tag_detect>/
→˓services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_qr_code_detect|rc_april_tag_detect>/services/reset_

→˓defaults

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.2.9 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. Asuccessful service returns with a return_code value of 0. Negative return_code values indicate that theservice failed. Positive return_code values indicate that the service succeeded with additional informa-tion. The smaller value is selected in case a service has multiple return_code values, but all messagesare appended in the return_code message.
The following table contains a list of common return codes:

Code Description0 Success-1 An invalid argument was provided-4 A timeout occurred while waiting for the image pair-9 The license is not valid-11 Sensor not connected, not supported or not ready-101 Internal error during tag detection-102 There was a backwards jump of system time-103 Internal error during tag pose estimation-200 A fatal internal error occurred200 Multiple warnings occurred; see list in message201 The module was not in state RUNNING

6.3.3 ItemPick and BoxPick

6.3.3.1 Introduction

The ItemPick and BoxPick modules provide out-of-the-box perception solutions for robotic pick-and-place applications. ItemPick targets the detection of flat surfaces of unknown objects for picking witha suction gripper. BoxPick detects rectangular surfaces and determines their position, orientation andsize for grasping. With the +Match extension, BoxPick can be used to detect textured rectangles with
Basler AGManual: rc_visard 103 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

consistent orientations. The interface of both modules is very similar. Therefore both modules aredescribed together in this chapter.
In addition, both modules offer:

• A dedicated page on the rc_visard Web GUI (Section 7.1) for easy setup, configuration, testing, andapplication tuning.
• The definition of regions of interest to select relevant volumes in the scene (see RoiDB, Section6.5.2).
• A load carrier detection functionality for bin-picking applications (see LoadCarrier, Section 6.3.1),to provide grasps for items inside a bin only.
• The definition of compartments inside a load carrier to provide grasps for specific volumes of thebin only.
• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-
tion (Section 6.4.1) module, to provide grasps in the user-configured external reference frame.

• A quality value associated to each suggested grasp and related to the flatness of the graspingsurface.
• Selection of a sorting strategy to sort the returned grasps.
• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Note: In this chapter, cluster and surface are used as synonyms and identify a set of points (or pixels)with defined geometrical properties.
The modules are optional on-board modules of the rc_visard and require separate ItemPick or BoxPick
licenses (Section 8.7) to be purchased. The +Match extension of BoxPick requires an extra license.
6.3.3.2 Detection of items (BoxPick)

There are two different types of models for the rectangles to be detected by the BoxPick module.
Per default, BoxPick only supports item_models of type RECTANGLE. With the +Match extension, alsoitem models of type TEXTURED_BOX can be detected. The detection of the different item model types isdescribed below.
Optionally, further information can be given to the BoxPick module:

• The ID of the load carrier which contains the items to be detected.
• A compartment inside the load carrier where to detect items.
• The ID of the region of interest where to search for the load carriers if a load carrier is set. Other-wise, the ID of the region of interest where to search for the items.
• The current robot pose in case the camera is mounted on the robot and the chosen coordinateframe for the poses is external or the chosen region of interest is defined in the external frame.

The returned pose of a detected item is the pose of the center of the detected rectangle in the desiredreference frame (pose_frame), with its z axis pointing towards the camera and the x axis aligned with thelong side of the item. This pose has a 180° rotation ambiguity around the z axis, which can be resolvedby using the +Match extension with a TEXTURED_BOX item model. Each detected item includes a uuid(Universally Unique Identifier) and the timestamp of the oldest image that was used to detect it.
Detection of items of type RECTANGLE (BoxPick)

BoxPick supports multiple item_models of type RECTANGLE. Each item model is defined by its minimumand maximum size, with the minimum dimensions strictly smaller than the maximum dimensions. The

Basler AGManual: rc_visard 104 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

dimensions should be given fairly accurately to avoid misdetections, while still considering a certaintolerance to account for possible production variations and measurement inaccuracies.
The detection of the rectangles runs in several steps. First, the point cloud is segmented into prefer-ably plane clusters. Then, straight line segments are detected in the 2D images and projected onto thecorresponding clusters. The clusters and the detected lines are visualized in the “Intermediate Result”visualization on the Web GUI’s BoxPick page. Finally, for each cluster, the set of rectangles best fittingto the detected line segments is extracted.
Detection of items of type TEXTURED_BOX (BoxPick+Match)

With the +Match extension, BoxPick additionally supports item_models of type TEXTURED_BOX. Whenthis item model type is used, only one item model can be given for each request.
The TEXTURED_BOX item model type should be used to detect multiple rectangles that have the sametexture, i.e. the same look or print, such as printed product packaging, labels, brochures or books. Itis required that for all objects the texture is at the same position with respect to the object geometry.Furthermore, the texture should not be repetitive.
A TEXTURED_BOX item is defined by the item’s exact dimensions x, y and z (currently z must always be0) with a tolerance dimensions_tolerance_m that indicates, how much the detected dimensions areallowed to deviate from the given dimensions. By default, a tolerance of 0.01 m is assumed. Fur-thermore, a template_id must be given, which will be used to refer to the specified dimensions andthe textures of the detected rectangles. Additionally, the maximum possible deformation of the items
max_deformation_m can be given in meters (default 0.004 m), to account for rigid or more flexible ob-jects.
If a template_id is used for the first time, BoxPick will run the detection of rectangles as for the itemmodel type RECTANGLE, and use the given dimensions tolerance to specify the dimensions range. Fromthe detected rectangles, so-called views are created, which contain the shape and the image intensityvalues of the rectangles, and are stored in a newly created template with the given template_id. Theviews are created iteratively: Starting from the detected rectangle with the highest score, a view is cre-ated and then used to detect more rectangles with the same texture. Then, all remaining clusters areused to detect further rectangles by the given dimensions range and again a view is created from the bestrectangle and used for further detections. Each template can store up to 10 different views, for examplecorresponding to different types of the same product packaging. Each view will be assigned a unique ID(view_uuid) and all rectangle items with a matching texture will be assigned the same view_uuid. Thatalso means that all items with the same view_uuidwill have consistent orientations, because the orien-tation of each item is aligned with its texture. The views can be displayed, deleted and the orientation ofeach view can be set via the Web GUI (Section 7.1) by clicking on the template or its edit symbol in thetemplate list. Each detected item contains a field view_pose_set indicating whether the orientation ofthe item’s view was explicitly set or is still unset at its original random state, which has a 180° ambiguity.The type of a returned item with a view_uuid will be TEXTURED_RECTANGLE.
If the template with the given template_id already exists, the existing views will be used to detect rect-angles based on their texture. If additional rectangles are found with matching dimensions, but differenttexture, new views will be generated and added to the template. When the maximum number of viewsis reached, views that are matched only rarely will be deleted so that newly generated views can beadded to the template and the template is kept up-to-date. To prevent a template from being updated,automatic updating can be disabled and enabled for each template in the Web GUI by clicking on thetemplate or the edit symbol in the template list. The dimension tolerance and themaximumdeformationcan also be changed there for each template. The maximum deformation determines the tolerance forthe texture matching, representing possible shifts within the texture, e.g. caused by deformations of theobject surface. For rigid objects the max_deformation_m should be set to a low value in meters to ensureaccurate matching.
The template’s dimensions can only be specified when creating a new template. Once the template isgenerated, the dimensions cannot be changed and do not need to be given in the detect request. Ifthe dimensions are still given in the request, they must match the existing dimensions in the template.

Basler AGManual: rc_visard 105 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

However, the dimensions_tolerance_m and max_deformation_m can be set differently in every detectrequest and their values will also be updated in the stored template.
6.3.3.3 Computation of grasps

The ItemPick and BoxPick modules offer a service for computing grasps for suction grippers. The grip-per is defined by its suction surface length and width.
The ItemPickmodule identifies flat surfaces in the scene and supports flexible and/or deformable items.The type of these item_models is called UNKNOWN since they don’t need to have a standard geometricalshape. Optionally, the user can also specify the minimum and maximum size of the item.
For BoxPick, the grasps are computed on the detected rectangular items (see Detection of items (Box-
Pick), Section 6.3.3.2).
Optionally, further information can be given to the modules in a grasp computation request:

• The ID of the load carrier which contains the items to be grasped.
• A compartment inside the load carrier where to compute grasps (see Load carrier compartments,Section 6.5.1.3).
• The ID of the 3D region of interest where to search for the load carriers if a load carrier is set.Otherwise, the ID of the 3D region of interest where to compute grasps.
• Collision detection information: The ID of the gripper to enable collision checking and optionallya pre-grasp offset to define a pre-grasp position. Details on collision checking are given below in
CollisionCheck (Section 6.3.3.4).

A grasp provided by the ItemPick and BoxPick modules represents the recommended pose of the TCP(Tool Center Point) of the suction gripper. The grasp type is always set to SUCTION. The computed grasppose is the center of the biggest ellipse that can be inscribed in each surface. The grasp orientation isa right-handed coordinate system and is defined such that its z axis is normal to the surface pointinginside the object at the grasp position and its x axis is directed along the maximum elongation of theellipse.

Fig. 6.16: Illustration of suction grasp with coordinate system and ellipse representing the maximumsuction surface.
Each grasp includes the dimensions of the maximum suction surface available, modelled as an ellipseof axes max_suction_surface_length and max_suction_surface_width. The user is enabled to filtergrasps by specifying the minimum suction surface required by the suction device in use.
In the BoxPick module, the grasp position corresponds to the center of the detected rectangle and thedimensions of the maximum suction surface available matches the estimated rectangle dimensions.Detected rectangles with missing data or occlusions by other objects for more than 15% of their surfacedo not get an associated grasp.
Each grasp also includes a quality value, which gives an indication of the flatness of the graspingsurface. The quality value varies between 0 and 1, where higher numbers correspond to a flatter recon-structed surface.
Basler AGManual: rc_visard 106 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

The grasp definition is complemented by a uuid (Universally Unique Identifier) and the timestamp of theoldest image that was used to compute the grasp.
Grasp sorting is performed based on the selected sorting strategy. The following sorting strategies areavailable and can be set in the Web GUI (Section 7.1) or using the set_sorting_strategies service call:

• gravity: highest grasp points along the gravity direction are returned first,
• surface_area: grasp points with the largest surface area are returned first,
• direction: grasp points with the shortest distance along a defined direction vector in a given
pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on acombination of gravity and surface_area.
6.3.3.4 Interaction with other modules

Internally, the ItemPick and BoxPick modules depend on, and interact with other on-board modules aslisted below.
Note: All changes and configuration updates to these modules will affect the performance of theItemPick and BoxPick modules.

Stereo camera and Stereo matching

The ItemPick and BoxPick modules make internally use of the following data:
• Rectified images from the Camera module (rc_camera, Section 6.1.1);
• Disparity, error, and confidence images from the Stereo matching module (rc_stereomatching,Section 6.1.2).

All processed images are guaranteed to be captured after the module trigger time.
IO and Projector Control

In case the rc_visard is used in conjunctionwith an external randomdot projector and the IO andProjector
Control module (rc_iocontrol, Section 6.4.4), it is recommended to connect the projector to GPIO Out1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matching pa-
rameters, Section 6.1.2.5), so that on each image acquisition trigger an image with and without projectorpattern is acquired.
Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive(see Description of run-time parameters, Section 6.4.4.1).
In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize theexposure of both images (see Stereo camera parameters, Section 6.1.1.3).
Hand-eye calibration

In case the camera has been calibrated to a robot, the ItemPick and BoxPick modules can automaticallyprovide poses in the robot coordinate frame. For the ItemPick and BoxPick nodes’ Services (Section6.3.3.7), the frame of the output poses can be controlled with the pose_frame argument.
Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses provided by the modules are in the camera frame, and no priorknowledge about the pose of the camera in the environment is required. This means that the

Basler AGManual: rc_visard 107 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

configured regions of interest and load carriersmovewith the camera. It is the user’s responsibilityto update the configured poses if the camera frame moves (e.g. with a robot-mounted camera).
2. External frame (external). All poses provided by themodules are in the external frame, configuredby the user during the hand-eye calibration process. The module relies on the on-board Hand-eye

calibration module (Section 6.4.1) to retrieve the sensor mounting (static or robot mounted) andthe hand-eye transformation. If the mounting is static, no further information is needed. If thesensor is robot-mounted, the robot_pose is required to transform poses to and from the externalframe.
Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.
If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame and the definition of the sorting direction:

• If pose_frame is set to external, providing the robot pose is obligatory.
• If the sorting direction is defined in external, providing the robot pose is obligatory.
• In all other cases, providing the robot pose is optional.

LoadCarrier

The ItemPick and BoxPick modules use the load carrier detection functionality provided by the LoadCar-
rier module (rc_load_carrier, Section 6.3.1), with the run-time parameters specified for this module.However, only one load carrier will be returned and used in case multiple matching load carriers couldbe found in the scene. In case multiple load carriers of the same type are visible, a 3D region of interestshould be set to ensure that always the same load carrier is used for the ItemPick and BoxPickmodules.
CollisionCheck

Collision checking can be easily enabled for grasp computation of the ItemPick and BoxPick modulesby passing the ID of the used gripper and optionally a pre-grasp offset to the compute_grasps servicecall. The gripper has to be defined in the GripperDB module (see Setting a gripper, Section 6.5.3.2) anddetails about collision checking are given in Collision checking within other modules (Section 6.4.2.2).
If collision checking is enabled, only grasps which are collision free will be returned. However, the visu-alization images on the ItemPick or BoxPick page of the Web GUI also show colliding grasp points asblack ellipses.
The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-
sionCheck Parameters (Section 6.4.2.3).
6.3.3.5 Parameters

The ItemPick and BoxPick modules are called rc_itempick and rc_boxpick in the REST-API and are rep-resented in the Web GUI (Section 7.1) under Modules→ ItemPick and Modules→ BoxPick. The user canexplore and configure the rc_itempick and rc_boxpickmodule’s run-time parameters, e.g. for develop-ment and testing, using the Web GUI or the REST-API interface (Section 7.3).
Parameter overview

These modules offer the following run-time parameters:

Basler AGManual: rc_visard 108 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Table 6.27: The rc_itempick and rc_boxpickmodules’ applicationparameters
Name Type Min Max Default Description
max_grasps int32 1 20 5 Maximum number of provided grasps

Table 6.28: The rc_itempick and rc_boxpick modules’ surfaceclustering parameters
Name Type Min Max Default Description
cluster_max_dimension float64 0.05 0.8 0.3 Only for rc_itempick.Maximum allowed di-ameter for a cluster inmeters. Clusters witha diameter larger thanthis value are not usedfor grasp computation.
cluster_max_curvature float64 0.005 0.5 0.11 Maximumcurvature al-lowed within one clus-ter. The smaller thisvalue, the more clus-ters will be split apart.
clustering_patch_size int32 3 10 4 Only for rc_itempick.Size in pixels of thesquare patches thedepth map is subdi-vided into during thefirst clustering step
clustering_max_surface_rmse float64 0.0005 0.01 0.004 Maximum root-mean-square error (RMSE) inmeters of points be-longing to a surface
clustering_discontinuity_factor float64 0.1 5.0 1.0 Factor used to discrim-inate depth discontinu-ities within a patch.The smaller this value,the more clusters willbe split apart.

Basler AGManual: rc_visard 109 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Table 6.29: The rc_boxpickmodule’s rectangle detection parame-ters
Name Type Min Max Default Description
mode string - - Unconstrained Mode of the rectan-gle detection: [Uncon-strained, PackedGrid-Layout, PackedLayers]
manual_line_sensitivity bool false true false Indicates whether theuser-defined line sensi-tivity should be used orthe automatic one
line_sensitivity float64 0.1 1.0 0.1 Sensitivity of the linedetector
prefer_splits bool false true false Indicates whether rect-angles are split intosmaller ones whenpossible
min_cluster_coverage float64 0.0 0.99 0.0 Gives the minimal ra-tio of points per clusterthat must be coveredwith detected items.

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s ItemPick or BoxPick page. The namein theWeb GUI is given in brackets behind the parameter name and the parameters are listed in the orderthey appear in the Web GUI:
max_grasps (Maximum Grasps)

sets the maximum number of provided grasps.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_itempick|rc_boxpick>/parameters/
→˓parameters?max_grasps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?max_grasps=<value>

cluster_max_dimension (Only for ItemPick, Cluster Maximum Dimension)

is the maximum allowed diameter for a cluster in meters. Clusters with a diameterlarger than this value are not used for grasp computation.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/parameters/parameters?cluster_

→˓max_dimension=<value>

API version 1 (deprecated)

Basler AGManual: rc_visard 110 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?cluster_max_dimension=<value>

cluster_max_curvature (Cluster Maximum Curvature)

is the maximum curvature allowed within one cluster. The smaller this value, themore clusters will be split apart.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_itempick|rc_boxpick>/parameters/
→˓parameters?cluster_max_curvature=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?cluster_max_

→˓curvature=<value>

clustering_patch_size (Only for ItemPick, Patch Size)

is the size of the square patches the depth map is subdivided into during the firstclustering step in pixels.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/parameters/parameters?
→˓clustering_patch_size=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/parameters?clustering_patch_size=<value>

clustering_discontinuity_factor (Discontinuity Factor)

is the factor used to discriminate depth discontinuities within a patch. The smallerthis value, the more clusters will be split apart.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_itempick|rc_boxpick>/parameters/
→˓parameters?clustering_discontinuity_factor=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?clustering_

→˓discontinuity_factor=<value>

clustering_max_surface_rmse (Maximum Surface RMSE)

is the maximum root-mean-square error (RMSE) in meters of points belonging toa surface.

Basler AGManual: rc_visard 111 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_itempick|rc_boxpick>/parameters/
→˓parameters?clustering_max_surface_rmse=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/parameters?clustering_max_

→˓surface_rmse=<value>

mode (Only for BoxPick, Mode)

determines the mode of the rectangle detection. Possible values are
Unconstrained, PackedGridLayout and PackedLayers. In PackedGridLayoutmode, rectangles of a cluster are detected in a dense grid pattern. In PackedLayersmode, boxes are assumed to form layers and box detection will start searchingfor items at the cluster corners. Use this mode in de-palletizing applications. In
Unconstrained mode (default), rectangles are detected without posing any con-straints on their relative locations or their positions in the segmented cluster. Fig.6.17 illustrates the modes for different scenarios.

Fig. 6.17: Illustration of appropriate BoxPick modes for different scenes. Modes marked with yellow areapplicable but not recommended for the corresponding scene. The gray areas indicate the rectanglesto be detected.
Via the REST-API, this parameter can be set as follows.

API version 2

Basler AGManual: rc_visard 112 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?mode=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?mode=<value>

manual_line_sensitivity (Only for BoxPick, Manual Line Sensitivity)

determines whether the user-defined line sensitivity should be used to extract thelines for rectangle detection. If this parameter is set to true, the user-defined
line_sensitivity value will be used. If this parameter is set to false, automaticline sensitivity will be used. This parameter should be set to true when automaticline sensitivity does not give enough lines at the box boundaries so that boxes can-not be detected. The detected line segments are visualized in the “IntermediateResult” visualization on the Web GUI’s BoxPick page.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?manual_

→˓line_sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?manual_line_sensitivity=<value>

line_sensitivity (Only for BoxPick, Line Sensitivity)

determines the line sensitivity for extracting the lines for rectangle detection, ifthe parameter manual_line_sensitivity is set to true. Otherwise, the value ofthis parameter has no effect on the rectangle detection. Higher values give moreline segments, but also increase the runtime of the box detection. This parame-ter should be increased when boxes cannot be detected because their boundaryedges are not detected. The detected line segments are visualized in the “Interme-diate Result” visualization on the Web GUI’s BoxPick page.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?line_

→˓sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?line_sensitivity=<value>

prefer_splits (Only for BoxPick, Prefer Splits)

determineswhether rectangles should be split into smaller ones if the smaller onesalsomatch the given itemmodels. This parameter should be set to true for packedbox layouts in which the given item models would also match a rectangle of thesize of two adjoining boxes. If this parameter is set to false, the larger rectangleswill be preferred in these cases.

Basler AGManual: rc_visard 113 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?prefer_

→˓splits=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?prefer_splits=<value>

min_cluster_coverage (Only for BoxPick, Minimum Cluster Coverage)

determines which ratio of each segmented cluster must be covered with rectangledetections to consider the detections to be valid. If the minimum cluster coverageis not reached for a cluster, no rectangle detections will be returned for this clusterand a warning will be given. This parameter should be used to verify that all itemson a layer in a de-palletizing scenario are detected.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/parameters/parameters?min_

→˓cluster_coverage=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/parameters?min_cluster_coverage=<value>

6.3.3.6 Status values

The rc_itempick and rc_boxpick modules report the following status values:
Table 6.30: The rc_itempick and rc_boxpick modules status val-ues

Name Description
data_acquisition_time Time in seconds required by the last active service to acquireimages
grasp_computation_time Processing time of the last grasp computation in seconds
last_timestamp_processed The timestamp of the last processed dataset
load_carrier_detection_time Processing time of the last load carrier detection in seconds
processing_time Processing time of the last detection (including load carrierdetection) in seconds
state The current state of the rc_itempick and rc_boxpick node

The reported state can take one of the following values.
Table 6.31: Possible states of the ItemPick and BoxPick modules

State name DescriptionIDLE The module is idle.RUNNING The module is running and ready for load carrier detection and grasp computation.FATAL A fatal error has occurred.

Basler AGManual: rc_visard 114 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

6.3.3.7 Services

The user can explore and call the rc_itempick and rc_boxpickmodule’s services, e.g. for developmentand testing, using the REST-API interface (Section 7.3) or the rc_visard Web GUI (Section 7.1).
The ItemPick and BoxPick modules offer the following services.
detect_items (BoxPick only)

Triggers the detection of rectangles as described in Detection of items (BoxPick) (Section6.3.3.2).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/detect_items

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/detect_items

Request

Required arguments:
pose_frame: see Hand-eye calibration (Section 6.3.3.4).
item_models: list of item models to be detected. The type of the item modelmust be RECTANGLE or TEXTURED_BOX. For type RECTANGLE, rectanglemust be filled,while for TEXTURED_BOX, textured_box must be filled. See Detection of items (Box-
Pick) (Section 6.3.3.2) for a detailed description of the item model types.

Potentially required arguments:
robot_pose: see Hand-eye calibration (Section 6.3.3.4).

Optional arguments:
load_carrier_id: ID of the load carrier which contains the items to be detected.
load_carrier_compartment: compartment inside the load carrier where to detectitems (see Load carrier compartments, Section 6.5.1.3).
region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interestwhere to search for the load carriers. Otherwise, ID of the 3D region of interestwhere to search for the items.

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}

(continues on next page)

Basler AGManual: rc_visard 115 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
},
"textured_box": {
"dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {
"box": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

load_carriers: list of detected load carriers.
items: list of detected rectangles.
timestamp: timestamp of the image set the detection ran on.
return_code: holds possible warnings or error codes and messages.
The definition for the response with corresponding datatypes is:

Basler AGManual: rc_visard 116 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

{
"name": "detect_items",
"response": {
"items": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {
"x": "float64",
"y": "float64"

},
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string",
"view_pose_set": "bool",
"view_uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},

(continues on next page)

Basler AGManual: rc_visard 117 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

compute_grasps (for ItemPick)

Triggers the computation of grasping poses for a suction device as described inComputation
of grasps (Section 6.3.3.3).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_itempick/services/compute_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_itempick/services/compute_grasps

Request

Required arguments:
pose_frame: see Hand-eye calibration (Section 6.3.3.4).
suction_surface_length: length of the suction device grasping surface.
suction_surface_width: width of the suction device grasping surface.

Potentially required arguments:
robot_pose: see Hand-eye calibration (Section 6.3.3.4).

Optional arguments:
load_carrier_id: ID of the load carrier which contains the items to be grasped.
load_carrier_compartment: compartment inside the load carrier where to com-pute grasps (see Load carrier compartments, Section 6.5.1.3).

Basler AGManual: rc_visard 118 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interestwhere to search for the load carriers. Otherwise, ID of the 3D region of interestwhere to compute grasps.
item_models: list of unknown itemswithminimumandmaximumdimensions, withtheminimumdimensions strictly smaller than themaximumdimensions. Only one
item_model of type UNKNOWN is currently supported.
collision_detection: see Collision checking within other modules (Section6.4.2.2).

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"type": "string",
"unknown": {
"max_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",

(continues on next page)

Basler AGManual: rc_visard 119 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.
grasps: sorted list of suction grasps.
timestamp: timestamp of the image set the detection ran on.
return_code: holds possible warnings or error codes and messages.
The definition for the response with corresponding datatypes is:
{

"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"load_carriers": [

{

(continues on next page)

Basler AGManual: rc_visard 120 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

compute_grasps (for BoxPick)

Triggers the detection of rectangles and the computation of grasping poses for the detectedrectangles as described in Computation of grasps (Section 6.3.3.3).
Details

This service can be called as follows.
API version 2

Basler AGManual: rc_visard 121 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_boxpick/services/compute_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_boxpick/services/compute_grasps

Request

Required arguments:
pose_frame: see Hand-eye calibration (Section 6.3.3.4).
item_models: list of item models to be detected. The type of the item modelmust be RECTANGLE or TEXTURED_BOX. For type RECTANGLE, rectanglemust be filled,while for TEXTURED_BOX, textured_box must be filled. See Detection of items (Box-
Pick) (Section 6.3.3.2) for a detailed description of the item model types.
suction_surface_length: length of the suction device grasping surface.
suction_surface_width: width of the suction device grasping surface.

Potentially required arguments:
robot_pose: see Hand-eye calibration (Section 6.3.3.4).

Optional arguments:
load_carrier_id: ID of the load carrier which contains the items to be grasped.
load_carrier_compartment: compartment inside the load carrier where to com-pute grasps (see Load carrier compartments, Section 6.5.1.3).
region_of_interest_id: if load_carrier_id is set, ID of the 3D region of interestwhere to search for the load carriers. Otherwise, ID of the 3D region of interestwhere to compute grasps.
collision_detection: see Collision checking within other modules (Section6.4.2.2).

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"item_models": [
{

"rectangle": {
"max_dimensions": {
"x": "float64",
"y": "float64"

},
"min_dimensions": {
"x": "float64",
"y": "float64"

}
},
"textured_box": {
"dimensions": {
"x": "float64",

(continues on next page)

Basler AGManual: rc_visard 122 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"y": "float64",
"z": "float64"

},
"dimensions_tolerance_m": "float64",
"max_deformation_m": "float64",
"template_id": "string"

},
"type": "string"

}
],
"load_carrier_compartment": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
}

},
"load_carrier_id": "string",
"pose_frame": "string",
"region_of_interest_id": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"suction_surface_length": "float64",
"suction_surface_width": "float64"

}
}

Response

load_carriers: list of detected load carriers.
items: list of detected rectangles.
grasps: sorted list of suction grasps.
timestamp: timestamp of the image set the detection ran on.
return_code: holds possible warnings or error codes and messages.
The definition for the response with corresponding datatypes is:

Basler AGManual: rc_visard 123 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

{
"name": "compute_grasps",
"response": {
"grasps": [

{
"item_uuid": "string",
"max_suction_surface_length": "float64",
"max_suction_surface_width": "float64",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"quality": "float64",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string"

}
],
"items": [
{

"grasp_uuids": [
"string"

],
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rectangle": {

"x": "float64",
"y": "float64"

},
"template_id": "string",
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"type": "string",
"uuid": "string",
"view_pose_set": "bool",

(continues on next page)

Basler AGManual: rc_visard 124 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"view_uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {

"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {
"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps returned by the compute_graspsservice (see Computation of grasps, Section 6.3.3.3).

Basler AGManual: rc_visard 125 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_itempick|rc_boxpick>/services/set_

→˓sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, themodule will use the default sorting strategy.
If the weight for direction is set, the vector must contain the direction vector and
pose_frame must be either camera or external.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"surface_area": {
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps returned by the compute-grasps service(see Computation of grasps, Section 6.3.3.3).
Details

Basler AGManual: rc_visard 126 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_itempick|rc_boxpick>/services/get_

→˓sorting_strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/get_sorting_strategies

Request

This service has no arguments.
Response

All weight values are 0 when the module uses the default sorting strategy.
The definition for the response with corresponding datatypes is:
{

"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"gravity": {
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

},
"surface_area": {
"weight": "float64"

}
}

}

start

Starts the module. If the command is accepted, the module moves to state RUNNING.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_itempick|rc_boxpick>/services/start

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/start

Request

This service has no arguments.
Basler AGManual: rc_visard 127 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Response

The current_state value in the service response may differ from RUNNING if the state transi-tion is still in process when the service returns.
The definition for the response with corresponding datatypes is:
{

"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

stop

Stops the module. If the command is accepted, the module moves to state IDLE.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_itempick|rc_boxpick>/services/stop

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/stop

Request

This service has no arguments.
Response

The current_state value in the service response may differ from IDLE if the state transitionis still in process when the service returns.
The definition for the response with corresponding datatypes is:
{

"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

reset_defaults

Resets all parameters of themodule to its default values, as listed in above table. Also resetssorting strategies.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/<rc_itempick|rc_boxpick>/services/reset_

→˓defaults

Basler AGManual: rc_visard 128 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/reset_defaults

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest (deprecated)

Persistently stores a 3D region of interest on the rc_visard.
Details

This service can be called as follows.
API version 2

This service is not available in API version 2. Use set_region_of_interest (Section 6.5.2.4) in
rc_roi_db instead.
API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/set_region_of_interest

get_regions_of_interest (deprecated)

Returns the configured 3D regions of interest with the requested region_of_interest_ids.
Details

This service can be called as follows.
API version 2

This service is not available in API version 2. Use get_regions_of_interest (Section 6.5.2.4) in
rc_roi_db instead.
API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/get_regions_of_

→˓interest

delete_regions_of_interest (deprecated)

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.
Details

Basler AGManual: rc_visard 129 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

This service can be called as follows.
API version 2

This service is not available in API version 2. Use delete_regions_of_interest (Section 6.5.2.4)in rc_roi_db instead.
API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/<rc_itempick|rc_boxpick>/services/delete_regions_of_

→˓interest

6.3.3.8 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. Asuccessful service returns with a return_code value of 0. Negative return_code values indicate that theservice failed. Positive return_code values indicate that the service succeeded with additional informa-tion. The smaller value is selected in case a service has multiple return_code values, but all messagesare appended in the return_code message.
The following table contains a list of common codes:

Table 6.32: Return codes of the ItemPick and BoxPick services
Code Description0 Success-1 An invalid argument was provided-3 An internal timeout occurred, e.g. during box detection if the given dimension range is toolarge-4 Data acquisition took longer than allowed-8 The template has been deleted during detection.-10 New element could not be added as the maximum storage capacity of load carriers orregions of interest has been exceeded-11 Sensor not connected, not supported or not ready-200 Fatal internal error-301 More than one item model of type UNKNOWN provided to the compute_grasps service10 The maximum storage capacity of load carriers or regions of interest has been reached11 An existent persistent model was overwritten by the call to set_load_carrier or

set_region_of_interest100 The requested load carriers were not detected in the scene101 No valid surfaces or grasps were found in the scene102 The detected load carrier is empty103 All computed grasps are in collision with the load carrier112 Rejected detections of one or more clusters, because min_cluster_coverage was notreached.300 A valid robot_pose was provided as argument but it is not required999 Additional hints for application development

6.3.3.9 BoxPick Template API

BoxPick templates are only available with the +Match extension of BoxPick. For template upload, down-load, listing and removal, special REST-API endpoints are provided. Templates can also be uploaded,downloaded and removed via the Web GUI. The templates include the dimensions, the views and theirposes, if set. Up to 50 templates can be stored persistently on the rc_visard.
GET /templates/rc_boxpickGet list of all rc_boxpick templates.

Template request

Basler AGManual: rc_visard 130 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

GET /api/v2/templates/rc_boxpick HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of Template)

• 404 Not Found – node not found
Referenced Data Models

• Template (Section 7.3.4)
GET /templates/rc_boxpick/{id}Get a rc_boxpick template. If the requested content-type is application/octet-stream, the templateis returned as file.

Template request

GET /api/v2/templates/rc_boxpick/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Response Headers

• Content-Type – application/json application/ubjson application/octet-stream
Status Codes

• 200 OK – successful operation (returns Template)

• 404 Not Found – node or template not found
Referenced Data Models

• Template (Section 7.3.4)
PUT /templates/rc_boxpick/{id}Create or update a rc_boxpick template.

Template request

Basler AGManual: rc_visard 131 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detection modules

PUT /api/v2/templates/rc_boxpick/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Form Parameters

• file – template file (required)

Request Headers

• Accept – multipart/form-data application/json
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns Template)

• 400 Bad Request – Template is not valid or max number of templates reached
• 403 Forbidden– forbidden, e.g. because there is no valid license for thismodule.
• 404 Not Found – node or template not found
• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.3.4)
DELETE /templates/rc_boxpick/{id}Remove a rc_boxpick template.

Template request

DELETE /api/v2/templates/rc_boxpick/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)

Request Headers

• Accept – application/json application/ubjson
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation
• 403 Forbidden– forbidden, e.g. because there is no valid license for thismodule.

Basler AGManual: rc_visard 132 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

6.3. Detection modules

• 404 Not Found – node or template not found

6.3.4 SilhouetteMatch

6.3.4.1 Introduction

The SilhouetteMatch module is an optional on-board module of the rc_visard and requires a separateSilhouetteMatch license (Section 8.7) to be purchased.
The module detects objects by matching a predefined silhouette (“template”) to edges in the image.
The SilhouetteMatch module can detect objects in two different scenarios:

With calibrated base plane: The objects are placed on a common base plane, which must becalibrated before the detection, and the objects have significant edges on a common planethat is parallel to the base plane.
With object plane detection: The objects can be placed at different, previously unknownheights, if the objects have a planar surface and their outer contours are well visible in theimages (e.g. stacked flat objects).

Templates for object detection can be created by uploading a DXF file and specifying the object height.The correct scale and unit of the contours are extracted from the DXF file. If no units are present in theDXF file, the user has to specify which units should be used. When the outer contour of the object in theDXF file is closed, a 3D collision model is created automatically by extruding the contour by the givenobject height. This model will then be used for collision checking and in 3D visualizations. Uploadinga DXF file can be done in the Web GUI via the + Create a new Template button in the SilhouetteMatch
Templates and Grasps section on the Modules → SilhouetteMatch or Database → Templates pages.
Basler also offers a template generation service, where the user can upload CAD files or recorded dataof the objects and request object templates for the SilhouetteMatch module.
The object templates consist of significant edges of each object. These template edges are matched tothe edges detected in the left and right camera images, considering the actual size of the objects andtheir distance from the camera. The poses of the detected objects are returned and can be used forgrasping, for example.
The SilhouetteMatch module offers:

• A dedicated page on the rc_visard Web GUI (Section 7.1) for easy setup, configuration, testing, andapplication tuning.
• A REST-API interface (Section 7.3) and a KUKA Ethernet KRL Interface (Section 7.5).
• The definition of 2D regions of interest to select relevant parts of the camera image (see Setting a
region of interest, Section 6.3.4.3).

• A load carrier detection functionality for bin-picking applications (see LoadCarrier, Section 6.3.1),to provide grasps for objects inside a bin only.
• Storing of up to 50 templates.
• The definition of up to 50 grasp points for each template via an interactive visualization in the WebGUI.
• Collision checking between the gripper and the load carrier, the calibrated base plane, other de-tected objects and/or the point cloud.
• Support for static and robot-mounted cameras and optional integration with the Hand-eye calibra-
tion (Section 6.4.1) module, to provide grasps in the user-configured external reference frame.

• Selection of a sorting strategy to sort the detected objects and returned grasps.
• 3D visualization of the detection results with grasp points and gripper animations in the Web GUI.

Basler AGManual: rc_visard 133 Rev: 24.01.1Status: Jan 29, 2024

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detection modules

Suitable objects

The SilhouetteMatch module is intended for objects which have significant edges on a common planethat is parallel to the plane on which the objects are placed. This applies to flat, nontransparent objects,such as routed, laser-cut or water-cut 2D parts and flat-machined parts. More complex parts can alsobe detected if there are significant edges on a common plane, e.g. a special pattern printed on a flatsurface. The detection works best for objects on a texture-free plane. The color of the base planeshould be chosen such that a clear contrast between the objects and the base plane appears in theintensity image.
In case the objects are not placed on a common base plane or the base plane cannot be calibratedbeforehand, the objects need to have a planar surface and their outer contour must be well visible in theleft and right images. Furthermore, the template for these objects must have a closed outer contour.
Suitable scene

The scene must meet the following conditions to be suitable for the SilhouetteMatch module:
• The objects to be detected must be suitable for the SilhouetteMatch module as described above.
• Only objects belonging to one specific template are visible at a time (unmixed scenario). In caseother objects are visible as well, a proper region of interest (ROI) must be set.
• In case a calibrated base plane is used: The offset between the base plane normal and the camera’sline of sight does not exceed 10 degrees.
• In case the object planes are detected automatically: The offset between the object’s planar sur-face normal and the camera’s line of sight does not exceed 25 degrees.
• The objects are not partially or fully occluded.
• All visible objects are right side up (no flipped objects).
• The object edges to be matched are visible in both, left and right camera images.

6.3.4.2 Base-plane calibration

In case all objects are placed on a common plane that is known beforehand, a base-plane calibrationshould be performed before triggering a detection. Thereby, the distance and angle of the plane onwhichthe objects are placed is measured and stored persistently on the rc_visard.
Separating the detection of the base plane from the actual object detection renders scenarios possiblein which the base plane is temporarily occluded. Moreover, it increases performance of the object detec-tion for scenarioswhere the base plane is fixed for a certain time; thus, it is not necessary to continuouslyre-detect the base plane.
The base-plane calibration can be performed in three different ways, which will be explained in moredetail further down:

• AprilTag based
• Stereo based
• Manual

The base-plane calibration is successful if the normal vector of the estimated base plane is at most 10degrees offset to the camera’s line of sight. If the base-plane calibration is successful, it will be storedpersistently on the rc_visard until it is removed or a new base-plane calibration is performed.
Note: To avoid privacy issues, the image of the persistently stored base-plane calibration will appearblurred after rebooting the rc_visard.

Basler AGManual: rc_visard 134 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

In scenarios where the base plane is not accessible for calibration, a plane parallel to the base planecan be calibrated. Then an offset parameter can be used to shift the estimated plane onto the actualbase plane where the objects are placed. The offset parameter gives the distance in meters by whichthe estimated plane is shifted towards the camera.
In the REST-API, a plane is defined by a normal and a distance. normal is a normalized 3-vector, specify-ing the normal of the plane. The normal points away from the camera. distance represents the distanceof the plane from the camera along the normal. Normal and distance can also be interpreted as 𝑎, 𝑏, 𝑐,and 𝑑 components of the plane equation, respectively:

𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

AprilTag based base-plane calibration

AprilTag detection (ref. TagDetect, Section 6.3.2) is used to find AprilTags in the scene and fit a planethrough them. At least three AprilTags must be placed on the base plane so that they are visible in theleft and right camera images. The tags should be placed such that they are spanning a triangle thatis as large as possible. The larger the triangle, the more accurate is the resulting base-plane estimate.Use this method if the base plane is untextured and no external random dot projector is available. Thiscalibration mode is available via the REST-API interface (Section 7.3) and the rc_visard Web GUI.
Stereo based base-plane calibration

The 3D point cloud computed by the stereo matching module is used to fit a plane through its 3D points.Therefore, the region of interest (ROI) for this method must be set such that only the relevant baseplane is included. The plane_preference parameter allows to select whether the plane closest to orfarthest from the camera should be used as base plane. Selecting the closest plane can be used inscenarios where the base plane is completely occluded by objects or not accessible for calibration. Usethis method if the base plane is well textured or you can make use of a random dot projector to projecttexture on the base plane. This calibration mode is available via the REST-API interface (Section 7.3) andthe rc_visard Web GUI.
Manual base-plane calibration

The base plane can be set manually if its parameters are known, e.g. from previous calibrations. Thiscalibration mode is only available via the REST-API interface (Section 7.3) and not the rc_visardWeb GUI.
6.3.4.3 Setting a region of interest

If objects are to be detected only in part of the camera’s field of view, a 2D region of interest (ROI) canbe set accordingly as described in Region of interest (Section 6.5.2.2).
6.3.4.4 Setting of grasp points

To use SilhouetteMatch directly in a robot application, up to 50 grasp points can be defined for eachtemplate. A grasp point represents the desired position and orientation of the robot’s TCP (Tool CenterPoint) to grasp an object as shown in Fig. 6.18.

Basler AGManual: rc_visard 135 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

y

z

x
PgraspTCP y

z

x

Fig. 6.18: Definition of grasp points with respect to the robot’s TCP
Each grasp consists of an id which must be unique within all grasps for an object template, the
template_id representing the template to which the grasp should be attached, and the pose in the coor-dinate frame of the object template. Grasp points can be set via the REST-API interface (Section 7.3), orby using the interactive visualization in the Web GUI. Furthermore, a priority (spanning -2 for very lowto 2 for very high) can be assigned to a grasp. Priorities can facilitate robot applications and shortenresponse times when the run-time parameter only_highest_priority_grasps is set to true. In this casecollision checking concludes when grasps with the highest possible priority have been found. Finally,different grasps can be associated with different grippers by specifying a gripper_id. These individualgrippers are then used for collision checking of the corresponding grasps instead of the gripper definedin the detect_object request. If no gripper_id is given, the gripper defined in the detect_object re-quest will be used for collision checking.
When a grasp is defined on a symmetric object, all grasps symmetric to the defined onewill automaticallybe considered in the SilhouetteMatchmodule’s detect_object service call. Symmetric grasps for a givengrasp point can be retrieved using the get_symmetric_grasps service call and visualized in theWeb GUI.
Users can also define replications of grasps around a custom axis. These replications spawn multiplegrasps and free users from setting too many grasps manually. The replication origin is defined as acoordinate frame in the object’s coordinate frame and the x axis of the replication origin frame corre-sponds to the replication axis. The grasp is replicated by rotating it around this x axis starting from itsoriginal pose. The replication is done in steps of size step_x_deg degrees. The range is defined by theminimal and maximal boundaries min_x_deg and max_x_deg. The minimal (maximal) boundary must bea non-positive (non-negative) number up to (minus) 180 degrees.
Setting grasp points in the Web GUI

The rc_visard Web GUI provides an intuitive and interactive way of defining grasp points for object tem-plates. In a first step, the object template has to be uploaded to the rc_visard. This can be done in theWeb GUI in any pipeline under Modules → SilhouetteMatch by clicking on + Add a new Template in the
Templates andGrasps section, or inDatabase→ Templates in the SilhouetteMatch Templates andGraspssection. Once the template upload is complete, a dialog with a 3D visualization of the object template isshown for adding or editing grasp points. The same dialog appears when editing an existing template.If the template contains a collision model or a visualization model, this 3D model is visualized as well.
This dialog provides two ways for setting grasp points:

1. Adding grasps manually: By clicking on the + symbol, a new grasp is placed in the object origin.The grasp can be given a unique name which corresponds to its ID. The desired pose of the graspcan be entered in the fields for Position and Roll/Pitch/Yawwhich are given in the coordinate frameof the object template represented by the long x, y and z axes in the visualization. The grasp pointcan be placed freely with respect to the object template - inside, outside or on the surface. Thegrasp point and its orientation are visualized in 3D for verification.
2. Adding grasps interactively: Grasp points can be added interactively by first clicking on the Add

Grasp button in the upper right corner of the visualization and then clicking on the desired pointon the object template visualization. If the 3D model is displayed, the grasps will be attached tothe surface of the 3D model. Otherwise, the grasp is attached to the template surface. The grasporientation is a right-handed coordinate system and is chosen such that its z axis is perpendicular

Basler AGManual: rc_visard 136 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

to the surface pointing inside the template at the grasp position. The position and orientation in theobject coordinate frame is displayed on the right. The position and orientation of the grasp can alsobe changed interactively. In case Snap to surface is disabled (default), the grasp can be translatedand rotated freely in all three dimensions by clicking on Move Grasp in the visualization menu andthen dragging the grasp along the appropriate axis to the desired position. The orientation of thegrasp can also be changed by rotating the axis with the mouse. In case Snap to surface is enabledin the visualization, the grasp can only be moved along the model surface.
Users can also specify a grasp priority by changing thePriority slider. A dedicated gripper can be selectedin the Gripper drop down field.
By activating the Replication check box, users can replicate the grasp around a custom axis. The replica-tion axis and the resulting replicated grasps are visualized. The position and orientation of the replicationaxis relative to the object coordinate frame can be adjusted interactively by clicking onMove Replication
Axis in the visualization menu and then dragging the axis to the desired position and orientation. Thegrasps are replicated within the specified rotation range at the selected rotation step size. Users can cy-cle through a visualization of the replicated grasps by dragging the bar below Cycle through n replicated
grasps in the View Options section of the visualization menu. If a gripper is selected for the grasp or agripper has been chosen in the visualization menu, the gripper is also shown at the currently selectedgrasp.
If the object template has symmetries, the grasps which are symmetric to the defined grasps can bedisplayed alongwith their replications (if defined) by enabling . . . symmetries in the ViewOptions sectionof the visualization menu. The user can also cycle through a visualization of the symmetric grasps bydragging the bar below Cycle through n symmetric grasps.
Setting grasp points via the REST-API

Grasp points can be set via the REST-API interface (Section 7.3) using the set_grasp or set_all_graspsservices (see Internal services, Section 6.3.4.12). A grasp consists of the template_id of the templateto which the grasp should be attached, an id uniquely identifying the grasp point and the pose. The poseis given in the coordinate frame of the object template and consists of a position in meters and an
orientation as quaternion. A dedicated gripper can be specified through setting the gripper_id field.The priority is specified by an integer value, ranging from -2 for very low, to 2 for very high with a stepsize of 1. The replication origin is defined as a transformation in the object’s coordinate frame and the xaxis of the transformation corresponds to the replication axis. The replication range is controlled by the
min_x_deg and max_x_deg fields and the step size step_x_deg.
6.3.4.5 Setting the preferred orientation of the TCP

The SilhouetteMatch module determines the reachability of grasp points based on the preferred orien-
tation of the gripper or TCP. The preferred orientation can be set via the set_preferred_orientationservice or on the SilhouetteMatch page in the Web GUI. The resulting direction of the TCP’s z axis isused to reject grasps which cannot be reached by the gripper. Furthermore, the preferred orientationcan be used to sort the reachable grasps by setting the corresponding sorting strategy.
The preferred orientation can be set in the camera coordinate frame or in the external coordinate frame,in case a hand-eye calibration is available. If the preferred orientation is specified in the external co-ordinate frame and the sensor is robot mounted, the current robot pose has to be given to each objectdetection call, so that the preferred orientation can be used for filtering and, optionally, sorting the graspson the detected objects. If no preferred orientation is set, the orientation of the left camera is used asthe preferred orientation of the TCP.
6.3.4.6 Setting the sorting strategies

The objects and grasps returned by the detect_object service call are sorted according to a sortingstrategy which can be chosen by the user. The following sorting strategies are available and can be setin the Web GUI (Section 7.1) or using the set_sorting_strategies service call:
Basler AGManual: rc_visard 137 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

• preferred_orientation: objects and grasp points with minimal rotation difference between theirorientation and the preferred orientation of the TCP are returned first,
• direction: objects and grasp points with the shortest distance along a defined direction vectorin a given pose_frame are returned first.

If no sorting strategy is set or default sorting is chosen in the Web GUI, sorting is done based on acombination of preferred_orientation and the minimal distance from the camera along the z axis ofthe preferred orientation of the TCP.
6.3.4.7 Detection of objects

For triggering the object detection, in general, the following information must be provided to the Silhou-etteMatch module:
• The template of the object to be detected in the scene.
• The coordinate frame in which the poses of the detected objects shall be returned (ref. Hand-eye
calibration, Section 6.3.4.8).

Optionally, further information can be given to the SilhouetteMatch module:
• A flag object_plane_detection determining whether the surface plane of the objects should beused for the detection instead of the calibrated base plane.
• An offset, in case the calibrated base plane should be used but the objects are not lying onthis plane but on a plane parallel to it. The offset is the distance between both planes given inthe direction towards the camera. If omitted, an offset of 0 is assumed. It must not be set if
object_plane_detection is true.

• The ID of the load carrier which contains the objects to be detected.
• The ID of the region of interest where to search for the load carrier if a load carrier is set. Other-wise, the ID of the region of interest where the objects should be detected. If omitted, objects arematched in the whole image.
• The current robot pose in case the camera is mounted on the robot and the chosen coordinateframe for the poses is external or the preferred orientation is given in the external frame.
• Collision detection information: The ID of the gripper to enable collision checking and optionallya pre-grasp offset to define a pre-grasp position. Details on collision checking are given below in
CollisionCheck (Section 6.3.4.8).

In case the object_plane_detection flag is not true, objects can only be detected after a successfulbase-plane calibration. It must be ensured that the position and orientation of the base plane does notchange before the detection of objects. Otherwise, the base-plane calibration must be renewed.
When object_plane_detection is set to true, a base-plane calibration is not required and an existingbase-plane calibration will be ignored. During detection, the scene is clustered into planar surfaces andtemplate matching is performed on each plane whose tilt with respect to the camera’s line of sight isless than 25° and whose size is large enough to contain the selected template. When a match is found,its position and orientation are refined using the image edges and the point cloud inside the template’souter contour. For this, it is required that the outer contour of the template is closed and that the object’ssurface is planar.
On theWeb GUI the detection can be tested in the Try Out section of the SilhouetteMatch page. Differentimage streams can be selected to show intermediate results and the finalmatches as shown in Fig. 6.19.

The “Template” image stream shows the template to be matched in red with the de-fined grasp points in green (see Setting of grasp points, Section 6.3.4.4). The templateis warped to the size and tilt matching objects on the calibrated base plane or, in case
object_plane_detection was used, the highest segmented plane, would have. The corre-sponding plane is shown in dark blue.

Basler AGManual: rc_visard 138 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

The “Intermediate Result” image stream shows the edges of the left image that were usedto search for matches in light blue. The chosen region of interest is shown as bold petrolrectangle. A shaded blue area on the left visualizes the region of the left camera imagewhich does not overlap with the right image, and in which no objects can be detected. If
object_plane_detectionwas used, this image stream also shows the detected planar clus-ters in the scene. Clusters that were not used for matching, because they were too small ortoo tilted, are visualized with a stripe pattern.
The “Intermediate Result Right” image stream shows the edges of the right image that wereused to search for matches in light blue. The chosen region of interest is shown as boldpetrol rectangle. A shaded blue area on the right visualizes the region of the right cameraimage which does not overlap with the left image, and in which no objects can be detected.
The “Result” image shows the detection result. The image edges that were used to refine thematch poses are shown in light blue and the matches (instances) with the template edgesare shown in red. The blue circles are the origins of the detected objects as defined in thetemplate and the green circles are the reachable grasp points. Colliding grasp points arevisualized as red dots.

Fig. 6.19: “Template”, “Intermediate Result” and “Result” image streams of the SilhouetteMatch moduleas shown in the Web GUI for a detection with object_plane_detection set to true
The poses of the object origins in the chosen coordinate frame are returned as results in a list of
instances. In case the calibrated base plane was used for the detection (object_plane_detectionnot set or false), the orientations of the detected objects are aligned with the normal of the base plane.Otherwise, the orientations of the detected objects are aligned with the normal of a plane fitted to theobject points in the 3D point cloud.
If the chosen template also has grasp points attached, a list of grasps for all objects is returned inaddition to the list of detected objects. The grasp poses are given in the desired coordinate frameand thegrasps are sorted according to the selected sorting strategy (see Setting the sorting strategies, Section6.3.4.6). There are references between the detected object instances and the grasps via their uuids.
In case the templates have a continuous rotational symmetry (e.g. cylindrical objects), all returned objectposeswill have the sameorientation. Furthermore, all grasps symmetric to each grasp point on an objectare checked for reachability and collisions, and only the best one according to the given sorting strategyis returned.
For objects with a discrete symmetry (e.g. prismatic objects), all collision-free symmetries of each grasppoint which are reachable according to the given preferred TCP orientation are returned, ordered by thegiven sorting strategy.
The detection results and run times are affected by several run-time parameters which are listed andexplained further down. Improper parameters can lead to timeouts of the SilhouetteMatch module’sdetection process.
6.3.4.8 Interaction with other modules

Internally, the SilhouetteMatch module depends on, and interacts with other on-board modules as listedbelow.
Basler AGManual: rc_visard 139 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Note: All changes and configuration updates to these modules will affect the performance of theSilhouetteMatch module.

Stereo camera and stereo matching

The SilhouetteMatch module makes internally use of the rectified images from the Camera module(rc_camera, Section 6.1.1). Thus, the exposure time should be set properly to achieve the optimal per-formance of the module.
For base-plane calibration in stereomode, for load carrier detection, for automatic object plane detectionand for collision checking with the point cloud, the disparity images from the Stereo matching module(rc_stereomatching, Section 6.1.2) are used.
For detecting objects with a calibrated base plane, without load carrier and without collision checkingwith the point cloud, the stereo-matching module should not be run in parallel to the SilhouetteMatchmodule, because the detection runtime increases.
For best results it is recommended to enable smoothing (Section 6.1.2.5) for Stereo matching.
IO and Projector Control

In case the rc_visard is used in conjunctionwith an external randomdot projector and the IO andProjector
Control module (rc_iocontrol, Section 6.4.4), the projector should be used for the stereo-based base-plane calibration, for automatic object plane detection and for collision checking with the point cloud.
The projected patternmust not be visible in the left and right camera images during object detection as itinterferes with thematching process. Therefore, it is recommended to connect the projector to GPIO Out1 and set the stereo-camera module’s acquisition mode to SingleFrameOut1 (see Stereo matching pa-
rameters, Section 6.1.2.5), so that on each image acquisition trigger an image with and without projectorpattern is acquired.
Alternatively, the output mode for the GPIO output in use should be set to ExposureAlternateActive(see Description of run-time parameters, Section 6.4.4.1).
In either case, the Auto Exposure Mode exp_auto_mode should be set to AdaptiveOut1 to optimize theexposure of both images (see Stereo camera parameters, Section 6.1.1.3).
Hand-eye calibration

In case the camera has been calibrated to a robot, the SilhouetteMatch module can automatically pro-vide poses in the robot coordinate frame. For the SilhouetteMatch node’s Services (Section 6.3.4.11),the frame of the input and output poses and plane coordinates can be controlled with the pose_frameargument.
Two different pose_frame values can be chosen:

1. Camera frame (camera). All poses and plane coordinates provided to and by the module are in thecamera frame.
2. External frame (external). All poses and plane coordinates provided to and by the module are inthe external frame, configured by the user during the hand-eye calibration process. The modulerelies on the on-board Hand-eye calibration module (Section 6.4.1) to retrieve the camera mount-ing (static or robot mounted) and the hand-eye transformation. If the sensor mounting is static,no further information is needed. If the sensor is robot-mounted, the robot_pose is required totransform poses to and from the external frame.

All pose_frame values that are not camera or external are rejected.

Basler AGManual: rc_visard 140 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.
Note: If the hand-eye calibration has changed after base-plane calibration, the base-plane calibrationwill be marked as invalid and must be renewed.

If the sensor is robot-mounted, the current robot_pose has to be provided depending on the value of
pose_frame, the definition of the preferred TCP orientation and the sorting direction:

• If pose_frame is set to external, providing the robot pose is obligatory.
• If the preferred TCP orientation is defined in external, providing the robot pose is obligatory.
• If the sorting direction is defined in external, providing the robot pose is obligatory.
• In all other cases, providing the robot pose is optional.

If the current robot pose is provided during calibration, it is stored persistently on the rc_visard. If theupdated robot pose is later provided during get_base_plane_calibration or detect_object as well, thebase-plane calibration will be transformed automatically to this new robot pose. This enables the user tochange the robot pose (and thus camera position) between base-plane calibration and object detection.
Note: Object detection can only be performed if the limit of 10 degrees angle offset between the baseplane normal and the camera’s line of sight is not exceeded.

LoadCarrier

The SilhouetteMatch module uses the load carrier detection functionality provided by the LoadCarriermodule (rc_load_carrier, Section 6.3.1), with the run-time parameters specified for this module. How-ever, only one load carrier will be returned and used in case multiple matching load carriers could befound in the scene. In case multiple load carriers of the same type are visible, a region of interest shouldbe set to ensure that always the same load carrier is used for the SilhouetteMatch module.
CollisionCheck

Collision checking can be easily enabled for grasp computation of the SilhouetteMatch module bypassing a collision_detection argument to the detect_object service call. It contains the IDof the used gripper and optionally a pre-grasp offset. The gripper has to be defined in the Grip-perDB module (see Setting a gripper, Section 6.5.3.2) and details about collision checking are givenin Collision checking within other modules (Section 6.4.2.2). In addition to collision checking be-tween the gripper and the detected load carrier, collisions between the gripper and the calibratedbase plane will be checked, if the run-time parameter check_collisions_with_base_plane is true.If the selected SilhouetteMatch template contains a collision model and the run-time parameter
check_collisions_with_matches is true, also collisions between the gripper and all other detected ob-jects (not limited to max_number_of_detected_objects) will be checked. The object on which the grasppoint to be checked is located, is excluded from the collision check.
If the run-time parameter check_collisions_with_point_cloud is true, also collisions between the grip-per and a watertight version of the point cloud are checked. If this feature is used with suctions grippers,it should be ensured that the TCP is defined to be outside the gripper geometry, or that the grasp pointsare defined above the object surface. Otherwise every grasp will result in a collision between the gripperand the point cloud.
If collision checking is enabled, only grasps which are collision free will be returned. However, the visu-alization images on the SilhouetteMatch page of the Web GUI also show colliding grasp points in red.The objects which are considered in the collision check are also visualized with their edges in red.
The CollisionCheck module’s run-time parameters affect the collision detection as described in Colli-
sionCheck Parameters (Section 6.4.2.3).

Basler AGManual: rc_visard 141 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

6.3.4.9 Parameters

The SilhouetteMatch software module is called rc_silhouettematch in the REST-API and is representedin the Web GUI (Section 7.1) under Modules → SilhouetteMatch. The user can explore and configure the
rc_silhouettematch module’s run-time parameters, e.g. for development and testing, using the WebGUI or the REST-API interface (Section 7.3).
Parameter overview

This module offers the following run-time parameters:
Table 6.33: The rc_silhouettematch module’s run-time parame-ters

Name Type Min Max Default Description
check_collisions_with_-
base_plane

bool false true true Whether to check forcollisions betweengripper and base plane
check_collisions_with_matches bool false true true Whether to check forcollisions betweengripper and detectedmatches
check_collisions_with_-
point_cloud

bool false true false Whether to check forcollisions betweengripper and the pointcloud
edge_sensitivity float64 0.1 1.0 0.7 Sensitivity of the edgedetector
match_max_distance float64 0.1 10.0 3.0 Maximum alloweddistance in pixelsbetween the templateand the detectededges in the image
match_percentile float64 0.7 1.0 0.8 Percentage of tem-plate pixels that mustbe within the max-imum distance tosuccessfully matchthe template
max_number_of_detected_objects int32 1 20 10 Maximum number ofdetected objects
only_highest_priority_grasps bool false true false Whether to return onlythe highest prioritylevel grasps
point_cloud_enhancement string - - Off Type of enhancementof the point cloudusing the base plane:[Off, ReplaceBright]
quality string - - High Quality: [Low, Medium,High]

Description of run-time parameters

Each run-time parameter is represented by a row on the Web GUI’s SilhouetteMatch page. The name inthe Web GUI is given in brackets behind the parameter name and the parameters are listed in the orderthey appear in the Web GUI:

Basler AGManual: rc_visard 142 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

max_number_of_detected_objects (Maximum Object Number)

This parameter gives the maximum number of objects to detect in the scene. Ifmore than the given number of objects can be detected in the scene, only the ob-jects matching best to the given sorting strategy are returned.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓max_number_of_detected_objects=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?max_number_of_detected_

→˓objects=<value>

quality (Quality)

Object detection can be performed on images with different resolutions: High (fullimage resolution), Medium (half image resolution) and Low (quarter image resolu-tion). The lower the resolution, the lower the detection time, but the fewer detailsof the objects are visible.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓quality=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?quality=<value>

match_max_distance (Maximum Matching Distance)

This parameter gives the maximum allowed pixel distance of an image edge pixelfrom the object edge pixel in the template to be still considered as matching. If theobject is not perfectly represented in the template, it might not be detected whenthis parameter is low. High values, however, might lead to false detections in caseof a cluttered scene or the presence of similar objects, and also increase runtime.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓match_max_distance=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_max_distance=<value>

match_percentile (Matching Percentile)

This parameter indicates how strict the matching process should be. The match-ing percentile is the ratio of template pixels that must be within the Maximum
Basler AGManual: rc_visard 143 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Matching Distance to successfully match the template. The higher this number,the more accurate the match must be to be considered as valid.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓match_percentile=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?match_percentile=<value>

edge_sensitivity (Edge Sensitivity)

This parameter influences how many edges are detected in the left and right cam-era images. The higher this number, the more edges are found in the intensityimages. That means, for lower numbers, only the most significant edges are con-sidered for template matching. A large number of edges in the image might in-crease the detection time. It must be ensured that the edges of the objects to bedetected are detected in both, the left and the right camera images.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓edge_sensitivity=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?edge_sensitivity=<value>

only_highest_priority_grasps (Only Highest Priority Grasps)

If set to true, only grasps with the highest priority will be returned. If collision checking isenabled, only the collision-free grasps among the group of grasps with the highest priorityare returned. This can save computation time and reduce the number of grasps to be parsedon the application side.
Without collision checking, only grasps of highest priority are returned.
API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?only_

→˓highest_priority_grasps=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?only_highest_priority_

→˓grasps=<value>

check_collisions_with_base_plane (Check Collisions with Base Plane)

If this parameter is set to true, and collision checking is enabled by passing a grip-per to the detect_object service call, all grasp points will be checked for collisionsbetween the gripper and the calibrated base plane, and only grasp points at whichthe gripper would not collide with the base plane will be returned.
Basler AGManual: rc_visard 144 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓check_collisions_with_base_plane=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓base_plane=<value>

check_collisions_with_matches (Check Collisions with Matches)

If this parameter is set to true, and collision checking is enabled by passinga gripper to the detect_object service call, all grasp points will be checkedfor collisions between the gripper and all other detected objects (not limited to
max_number_of_detected_objects), and only grasp points at which the gripperwould not collide with any other detected object will be returned.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/parameters/parameters?
→˓check_collisions_with_matches=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓matches=<value>

check_collisions_with_point_cloud (Check Collisions with Point Cloud)

If this parameter is set to true, and collision checking is enabled by passing a grip-per to the detect_object service call, all grasp points will be checked for collisionsbetween the gripper a watertight version of the point cloud, and only grasp pointsat which the gripper would not collide with this point cloud will be returned.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?check_

→˓collisions_with_point_cloud=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?check_collisions_with_

→˓point_cloud=<value>

point_cloud_enhancement (Enhance with Base Plane)

This parameter is only considered when check_collisions_with_point_cloud istrue and the object detection was triggered without object_plane_detection. Bydefault, point_cloud_enhancement is set to Off (Off). If point_cloud_enhancementis set to ReplaceBright (Replace Bright ImagePixels), the calibrated base planewillbe used to enhance the point cloud that is used for collision checking. For this, the

Basler AGManual: rc_visard 145 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

depth values of all bright image pixels inside the image or, if set, the 2D region ofinterest will be set to the depth of the calibrated base plane. This parameter shouldbe used when dark objects are placed on an untextured bright background, e.g. ona light table.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/<0,1,2,3>/nodes/rc_silhouettematch/parameters?point_

→˓cloud_enhancement=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/parameters?point_cloud_enhancement=
→˓<value>

6.3.4.10 Status values

This module reports the following status values:
Table 6.34: The rc_silhouettematch module’s status values

Name Description
data_acquisition_time Time in seconds required by the last active service to acquireimages
last_timestamp_processed The timestamp of the last processed dataset
load_carrier_detection_time Processing time of the last load carrier detection in seconds
processing_time Processing time of the last detection (including load carrierdetection) in seconds

6.3.4.11 Services

The user can explore and call the rc_silhouettematch module’s services, e.g. for development andtesting, using the REST-API interface (Section 7.3) or the rc_visard Web GUI (Section 7.1).
The SilhouetteMatch module offers the following services.
detect_object

Triggers an object detection as described inDetection of objects (Section 6.3.4.7) and returnsthe pose of all found object instances.
Details

All images used by the service are guaranteed to be newer than the service trigger time.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/detect_object

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/detect_object

Request

Required arguments:

Basler AGManual: rc_visard 146 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

object_id in object_to_detect: ID of the template which should be detected.
pose_frame: see Hand-eye calibration (Section 6.3.4.8).

Potentially required arguments:
robot_pose: see Hand-eye calibration (Section 6.3.4.8).

Optional arguments:
object_plane_detection: false if the objects are placed on a calibrated baseplane, true if the objects’ surfaces are planar and the base plane is unknown orthe objects are located on multiple different planes, e.g. stacks.
offset: offset inmeters bywhich the base-plane calibrationwill be shifted towardsthe camera.
load_carrier_id: ID of the load carrier which contains the items to be detected.
collision_detection: see Collision checking within other modules (Section6.4.2.2).

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"collision_detection": {
"gripper_id": "string",
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"load_carrier_id": "string",
"object_plane_detection": "bool",
"object_to_detect": {
"object_id": "string",
"region_of_interest_2d_id": "string"

},
"offset": "float64",
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

The maximum number of returned instances can be controlled with the
max_number_of_detected_objects parameter.
object_id: ID of the detected template.
instances: list of detected object instances, ordered according to the chosen sorting strat-egy.

Basler AGManual: rc_visard 147 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

grasps: list of grasps on the detected objects, ordered according to the chosen sorting strat-egy. The instance_uuid gives the reference to the detected object in instances this graspbelongs to. The list of returned grasps will be trimmed to the 100 best grasps if more reach-able grasps are found. Each grasp contains a flag collision_checked and a gripper_id (see
Collision checking within other modules, Section 6.4.2.2).
load_carriers: list of detected load carriers.
timestamp: timestamp of the image set the detection ran on.
return_code: holds possible warnings or error codes and messages.
The definition for the response with corresponding datatypes is:
{

"name": "detect_object",
"response": {
"grasps": [

{
"collision_checked": "bool",
"gripper_id": "string",
"id": "string",
"instance_uuid": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"priority": "int8",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"instances": [

{
"grasp_uuids": [

"string"
],
"id": "string",
"object_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

} (continues on next page)

Basler AGManual: rc_visard 148 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
},
"pose_frame": "string",
"timestamp": {
"nsec": "int32",
"sec": "int32"

},
"uuid": "string"

}
],
"load_carriers": [

{
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"overfilled": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"object_id": "string",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

}
}

}

Basler AGManual: rc_visard 149 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

calibrate_base_plane

Triggers the calibration of the base plane, as described in Base-plane calibration (Section6.3.4.2).
Details

A successful base-plane calibration is stored persistently on the rc_visard and returned bythis service. The base-plane calibration is persistent over firmware updates and rollbacks.
All images used by the service are guaranteed to be newer than the service trigger time.
This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/calibrate_base_

→˓plane

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/calibrate_base_plane

Request

Required arguments:
plane_estimation_method: method to use for base-plane calibration. Valid valuesare STEREO, APRILTAG, MANUAL.
pose_frame: see Hand-eye calibration (Section 6.3.4.8).

Potentially required arguments:
plane if plane_estimation_method is MANUAL: plane that will be set as base-planecalibration.
robot_pose: see Hand-eye calibration (Section 6.3.4.8).
region_of_interest_2d_id: ID of the region of interest for base-plane calibration.

Optional arguments:
offset: offset in meters by which the estimated plane will be shifted towards thecamera.
plane_preference in stereo: whether the plane closest to or farthest fromthe camera should be used as base plane. This option can be set only if
plane_estimation_method is STEREO. Valid values are CLOSEST and FARTHEST. If notset, the default is FARTHEST.

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"offset": "float64",
"plane": {

"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"plane_estimation_method": "string",
"pose_frame": "string",
"region_of_interest_2d_id": "string",

(continues on next page)

Basler AGManual: rc_visard 150 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"stereo": {

"plane_preference": "string"
}

}
}

Response

plane: calibrated base plane.
timestamp: timestamp of the image set the calibration ran on.
return_code: holds possible warnings or error codes and messages.
The definition for the response with corresponding datatypes is:
{

"name": "calibrate_base_plane",
"response": {

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {
"nsec": "int32",
"sec": "int32"

}
}

}

get_base_plane_calibration

Returns the configured base-plane calibration.
Details

This service can be called as follows.
API version 2

Basler AGManual: rc_visard 151 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/get_base_plane_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_base_plane_calibration

Request

Required arguments:
pose_frame: see Hand-eye calibration (Section 6.3.4.8).

Potentially required arguments:
robot_pose: see Hand-eye calibration (Section 6.3.4.8).

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"pose_frame": "string",
"robot_pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

The definition for the response with corresponding datatypes is:
{

"name": "get_base_plane_calibration",
"response": {

"plane": {
"distance": "float64",
"normal": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Basler AGManual: rc_visard 152 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

delete_base_plane_calibration

Deletes the configured base-plane calibration.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/delete_base_

→˓plane_calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_base_plane_

→˓calibration

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "delete_base_plane_calibration",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_preferred_orientation

Persistently stores the preferred orientation of the gripper to compute the reachability ofthe grasps, which is used for filtering and, optionally, sorting the grasps returned by the
detect_object service (see Setting the preferred orientation of the TCP, Section 6.3.4.5).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/set_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_preferred_orientation

Request

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"orientation": {
"w": "float64",

(continues on next page)

Basler AGManual: rc_visard 153 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string"

}
}

Response

The definition for the response with corresponding datatypes is:
{

"name": "set_preferred_orientation",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_preferred_orientation

Returns the preferred orientation of the gripper to compute the reachability of the grasps,which is used for filtering and, optionally, sorting the grasps returned by the detect_objectservice (see Setting the preferred orientation of the TCP, Section 6.3.4.5).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/get_preferred_

→˓orientation

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_preferred_orientation

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "get_preferred_orientation",
"response": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose_frame": "string",
"return_code": {
"message": "string",

(continues on next page)

Basler AGManual: rc_visard 154 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"value": "int16"

}
}

}

set_sorting_strategies

Persistently stores the sorting strategy for sorting the grasps and detected objects returnedby the detect_object service (see Detection of objects, Section 6.3.4.7).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/set_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_sorting_strategies

Request

Only one strategy may have a weight greater than 0. If all weight values are set to 0, themodule will use the default sorting strategy.
If the weight for direction is set, the vector must contain the direction vector and
pose_frame must be either camera or external.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"preferred_orientation": {
"weight": "float64"

}
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "set_sorting_strategies",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}

(continues on next page)

Basler AGManual: rc_visard 155 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
}

}

get_sorting_strategies

Returns the sorting strategy for sorting the grasps and detected objects returned by the
detect_object service (see Detection of objects, Section 6.3.4.7).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/get_sorting_

→˓strategies

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_sorting_strategies

Request

This service has no arguments.
Response

All weight values are 0 when the module uses the default sorting strategy.
The definition for the response with corresponding datatypes is:
{

"name": "get_sorting_strategies",
"response": {
"direction": {

"pose_frame": "string",
"vector": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"weight": "float64"

},
"preferred_orientation": {
"weight": "float64"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

reset_defaults

Resets all parameters of themodule to its default values, as listed in above table. Also resetspreferred orientation and sorting strategies. The reset does not apply to templates and base-plane calibration.
Details

Basler AGManual: rc_visard 156 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/reset_defaults

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest_2d (deprecated)

Persistently stores a 2D region of interest on the rc_visard.
Details

This service can be called as follows.
API version 2

This service is not available in API version 2. Use set_region_of_interest_2d (Section 6.5.2.4)in rc_roi_db instead.
API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_region_of_interest_2d

get_regions_of_interest_2d (deprecated)

Returns the configured 2D regions of interest with the requested
region_of_interest_2d_ids.
Details

This service can be called as follows.
API version 2

This service is not available in API version 2. Use get_regions_of_interest_2d (Section 6.5.2.4)in rc_roi_db instead.
API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_regions_of_interest_2d

Basler AGManual: rc_visard 157 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

delete_regions_of_interest_2d (deprecated)

Deletes the configured 2D regions of interest with the requested
region_of_interest_2d_ids.
Details

This service can be called as follows.
API version 2

This service is not available in API version 2. Use delete_regions_of_interest_2d (Section6.5.2.4) in rc_roi_db instead.
API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_regions_of_interest_

→˓2d

6.3.4.12 Internal services

The following services for configuring grasps can change in future without notice. Setting, retrieving anddeleting grasps is recommend to be done via the Web GUI.
set_grasp

Persistently stores a grasp for the given object template on the rc_visard. All configuredgrasps are persistent over firmware updates and rollbacks.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/set_grasp

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_grasp

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section6.3.4.4).
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"grasp": {

"gripper_id": "string",
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

(continues on next page)

Basler AGManual: rc_visard 158 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "set_grasp",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_all_grasps

Replaces the list of grasps for the given object template on the rc_visard.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/set_all_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/set_all_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section6.3.4.4).
Basler AGManual: rc_visard 159 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"grasps": [

{
"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"template_id": "string"

}
}

Response

The definition for the response with corresponding datatypes is:
{

"name": "set_all_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

Basler AGManual: rc_visard 160 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

get_grasps

Returns all configured grasps which have the requested grasp_ids and belong to the re-quested template_ids.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/get_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are re-turned. If no template_ids are provided, all grasps with the requested grasp_ids are re-turned. If neither IDs are provided, all configured grasps are returned.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "get_grasps",
"response": {
"grasps": [

{
"gripper_id": "string",
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"priority": "int8",
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",

(continues on next page)

Basler AGManual: rc_visard 161 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_grasps

Deletes all grasps with the requested grasp_ids that belong to the requested template_ids.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/delete_grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/delete_grasps

Request

If no grasp_ids are provided, all grasps belonging to the requested template_ids are deleted.The template_ids list must not be empty.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"grasp_ids": [
"string"

],
"template_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:
Basler AGManual: rc_visard 162 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

{
"name": "delete_grasps",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_symmetric_grasps

Returns all grasps that are symmetric to the given grasp.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_silhouettematch/services/get_symmetric_

→˓grasps

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_silhouettematch/services/get_symmetric_grasps

Request

Details for the definition of the grasp type are given in Setting of grasp points (Section6.3.4.4).
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"grasp": {

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {

"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",

(continues on next page)

Basler AGManual: rc_visard 163 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
}

}

Response

The first grasp in the returned list is the one that was passed with the service call. If theobject template does not have an exact symmetry, only the grasp passed with the servicecall will be returned. If the object template has a continuous symmetry (e.g. a cylindricalobject), only 12 equally spaced sample grasps will be returned.
Details for the definition of the grasp type are given in Setting of grasp points (Section6.3.4.4).
The definition for the response with corresponding datatypes is:
{

"name": "get_symmetric_grasps",
"response": {

"grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"replication": {
"max_x_deg": "float64",
"min_x_deg": "float64",
"origin": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"step_x_deg": "float64"

},
"template_id": "string"

}
],

(continues on next page)

Basler AGManual: rc_visard 164 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

(continued from previous page)
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.3.4.13 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. Asuccessful service returns with a return_code value of 0. Negative return_code values indicate that theservice failed. Positive return_code values indicate that the service succeeded with additional informa-tion.
Table 6.35: Return codes of the SilhouetteMatch module services

Code Description0 Success-1 An invalid argument was provided-3 An internal timeout occurred, e.g. during object detection-4 Data acquisition took longer than allowed-7 Data could not be read or written to persistent storage-8 Module is not in a state in which this service can be called. E.g. detect_object cannot becalled if there is no base-plane calibration.-10 New element could not be added as the maximum storage capacity of regions of interest ortemplates has been exceeded-100 An internal error occurred-101 Detection of the base plane failed-102 The hand-eye calibration changed since the last base-plane calibration-104 Offset between the base plane normal and the camera’s line of sight exceeds 10 degrees10 The maximum storage capacity of regions of interest or templates has been reached11 An existing element was overwritten100 The requested load carrier was not detected in the scene101 None of the detected grasps is reachable102 The detected load carrier is empty103 All detected grasps are in collision107 The base plane was not transformed to the current camera pose, e.g. because no robotpose was provided during base-plane calibration108 The template is deprecated.109 The plane for object detection does not fit to the load carrier, e.g. objects are below the loadcarrier floor.111 The detection result’s pose could not be refined with the point cloud because the template’souter contour is not closed.151 The object template has a continuous symmetry999 Additional hints for application development

6.3.4.14 Template API

For template upload, download, listing and removal, special REST-API endpoints are provided. Templatescan also be uploaded, downloaded and removed via theWebGUI. The templates include the grasp points,if grasp points have been configured. Up to 50 templates can be stored persistently on the rc_visard.
GET /templates/rc_silhouettematchGet list of all rc_silhouettematch templates.

Template request

Basler AGManual: rc_visard 165 Rev: 24.01.1Status: Jan 29, 2024

6.3. Detection modules

GET /api/v2/templates/rc_silhouettematch HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of Template)

• 404 Not Found – node not found
Referenced Data Models

• Template (Section 7.3.4)
GET /templates/rc_silhouettematch/{id}Get a rc_silhouettematch template. If the requested content-type is application/octet-stream, thetemplate is returned as file.

Template request

GET /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Response Headers

• Content-Type – application/json application/ubjson application/octet-stream
Status Codes

• 200 OK – successful operation (returns Template)

• 404 Not Found – node or template not found
Referenced Data Models

• Template (Section 7.3.4)
PUT /templates/rc_silhouettematch/{id}Create or update a rc_silhouettematch template.

Template request

Basler AGManual: rc_visard 166 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.3. Detection modules

PUT /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the template (required)

Form Parameters

• file – template or dxf file (required)

• object_height– object height inmeters, requiredwhen uploading dxf (optional)
• units – Units for dxf file if not included in dxf (one of mm, cm, m, in, ft) (optional)

Request Headers

• Accept – multipart/form-data application/json
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns Template)

• 400 Bad Request – Template is not valid or max number of templates reached
• 403 Forbidden– forbidden, e.g. because there is no valid license for thismodule.
• 404 Not Found – node or template not found
• 413 Request Entity Too Large – Template too large

Referenced Data Models

• Template (Section 7.3.4)
DELETE /templates/rc_silhouettematch/{id}Remove a rc_silhouettematch template.

Template request

DELETE /api/v2/templates/rc_silhouettematch/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the template (required)

Request Headers

• Accept – application/json application/ubjson
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

Basler AGManual: rc_visard 167 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

6.4. Configuration modules

• 200 OK – successful operation
• 403 Forbidden– forbidden, e.g. because there is no valid license for thismodule.
• 404 Not Found – node or template not found

6.4 Configuration modules

The rc_visard provides several configuration modules which enable the user to configure the rc_visardfor specific applications.
The configuration modules are:

• Hand-eye calibration (rc_hand_eye_calibration, Section 6.4.1) enables the user to calibrate thecamera with respect to a robot, either via the Web GUI or the REST-API.
• CollisionCheck (rc_collision_check, Section 6.4.2) provides an easy way to check if a gripper isin collision.
• Camera calibration (rc_stereocalib, Section 6.4.3) enables the user to check and perform cam-era calibration via the WEB GUI (Section 7.1).
• IO and Projector Control (rc_iocontrol, Section 6.4.4) provides control over the sensor’s generalpurpose inputs and outputs with special modes for controlling an external random dot pro-jector.

6.4.1 Hand-eye calibration

For applications, in which the camera is integrated into one or more robot systems, it needs to be cali-brated w.r.t. some robot reference frames. For this purpose, the rc_visard is shipped with an on-boardcalibration routine called the hand-eye calibrationmodule. It is a basemodule which is available on every
rc_visard.
Note: The implemented calibration routine is completely agnostic about the user-defined robot frameto which the camera is calibrated. It might be a robot’s end-effector (e.g., flange or tool center point)or any point on the robot structure. The method’s only requirement is that the pose (i.e., translationand rotation) of this robot frame w.r.t. a user-defined external reference frame (e.g., world or robotmounting point) is exactly observable by the robot controller and can be reported to the calibrationmodule.

The Calibration routine (Section 6.4.1.3) itself is an easy-to-use multi-step procedure using a calibrationgrid which can be obtained from Basler.
6.4.1.1 Calibration interfaces

The following two interfaces are offered to conduct hand-eye calibration:
1. All services and parameters of this module required to conduct the hand-eye calibration program-

matically are exposed by the rc_visard’s REST-API interface (Section 7.3). The respective nodenameof thismodule is rc_hand_eye_calibration and the respective service calls are documented
Services (Section 6.4.1.5).
Note: The described approach requires a network connection between the rc_visard and therobot controller to pass robot poses from the controller to the rc_visard’s calibration module.

2. For use cases where robot poses cannot be passed programmatically to the rc_visard’s hand-eyecalibration module, the Web GUI’s Hand-Eye Calibration page under Configuration
offers a guided process to conduct the calibration routine manually.

Basler AGManual: rc_visard 168 Rev: 24.01.1Status: Jan 29, 2024

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.4. Configuration modules

Note: During the process, the described approach requires the user to manually enter into theWeb GUI robot poses, which need to be accessed from the respective robot-teaching or hand-held device.

6.4.1.2 Camera mounting

As illustrated in Fig. 6.20 and Fig. 6.22, two different use cases w.r.t. to the mounting of the cameragenerally have to be considered:
a. The camera is mounted on the robot, i.e., it is mechanically fixed to a robot link (e.g., at its flangeor a flange-mounted tool), and hence moves with the robot.
b. The camera is not mounted on the robot but is fixed to a table or other place in the robot’s vicinityand remains at a static position w.r.t. the robot.

While the general Calibration routine (Section 6.4.1.3) is very similar in both use cases, the calibrationprocess’s output, i.e., the resulting calibration transform, will be semantically different, and the fixture ofthe calibration grid will also differ.
Calibration with a robot-mounted camera When calibrating a robot-mounted camerawith the robot, thecalibration grid has to be secured in a static position w.r.t. the robot, e.g., on a table or some otherfixed-base coordinate system as sketched in Fig. 6.20.

Warning: It is extremely important that the calibration grid does not move during step 2 of the
Calibration routine (Section 6.4.1.3). Securely fixing its position to prevent unintended move-ments such as those caused by vibrations, moving cables, or the like is therefore strongly rec-ommended.

The result of the calibration (step 3 of the Calibration routine, Section 6.4.1.3) is a poseTrobotcamera de-scribing the (previously unknown) relative positional and rotational transformation from the cam-
era frame into the user-selected robot frame such that

probot = Rrobotcamera · pcamera + trobotcamera , (6.3)
where probot = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the robot frame, pcamera isthe same point represented in the camera coordinate frame, and Rrobotcamera as well as trobotcamera are thecorresponding 3× 3 rotation matrix and 3× 1 translation vector of the pose Trobotcamera, respectively.In practice, in the calibration result and in the provided robot poses, the rotation is defined by Eulerangles or as quaternion instead of a rotation matrix (see Pose formats, Section 12.1).

Basler AGManual: rc_visard 169 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

robot

ext

camera

T robot
ext

Tcamera
robot

calibration grid

Fig. 6.20: Important frames and transformations for calibrating a camera that is mounted on a generalrobot. The camera is mounted with a fixed relative position to a user-defined robot frame (e.g., flangeor TCP). It is important that the pose Textrobot of this robot frame w.r.t. a user-defined external referenceframe ext is observable during the calibration routine. The result of the calibration process is the desiredcalibration transformationTrobotcamera, i.e., the pose of the camera framewithin the user-defined robot frame.
Additional user input is required if the movement of the robot is constrained and the robot canrotate the Tool Center Point (TCP) only around one axis. This is typically the case for robots withfour Degrees Of Freedom (4DOF) that are often used for palletizing tasks. In this case, the usermust specify which axis of the robot frame is the rotation axis of the TCP. Further, the signed offsetfrom the TCP to the camera coordinate system along the TCP rotation axis has to be provided. Fig.6.21 illustrates the situation.
For the rc_visard, the camera coordinate system is located in the optical center of the left camera.The approximate location is given in section Coordinate frames (Section 3.7).

robot

ext

camera

T robot
ext Tcamera

robot

calibration grid

TCP rotation axis

TCP offset

Fig. 6.21: In case of a 4DOF robot, the TCP rotation axis and the offset from the TCP to the cameracoordinate system along the TCP rotation axis must be provided. In the illustrated case, this offset isnegative.
Calibration with a statically-mounted camera In use cases where the camera is positioned staticallyw.r.t. the robot, the calibration grid needs to be mounted to the robot as shown for example in Fig.6.22 and Fig. 6.23.

Basler AGManual: rc_visard 170 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Note: The hand-eye calibration module is completely agnostic about the exact mounting andpositioning of the calibration grid w.r.t. the user-defined robot frame. That means, the relativepositioning of the calibration grid to that frame neither needs to be known, nor it is relevant forthe calibration routine, as shown in Fig. 6.23.

Warning: It is extremely important that the calibration grid is attached securely to the robotsuch that it does not change its relative position w.r.t. the user-defined robot frame during step2 of the Calibration routine (Section 6.4.1.3).
In this use case, the result of the calibration (step 3 of the Calibration routine, Section 6.4.1.3) is theposeTextcamera describing the (previously unknown) relative positional and rotational transformationbetween the camera frame and the user-selected external reference frame ext such that

pext = Rextcamera · pcamera + textcamera , (6.4)
where pext = (𝑥, 𝑦, 𝑧)𝑇 is a 3D point with its coordinates expressed in the external reference frame
ext, pcamera is the same point represented in the camera coordinate frame, and Rextcamera as well as
textcamera are the corresponding 3× 3 rotation matrix and 3× 1 translation vector of the poseTextcamera,respectively. In practice, in the calibration result and in the provided robot poses, the rotation isdefined by Euler angles or as quaternion instead of a rotation matrix (see Pose formats, Section12.1).

robot

ext

camera

T robot
ext Tcamera

ext

calibration

grid

Fig. 6.22: Important frames and transformations for calibrating a statically mounted camera: The latteris mounted with a fixed position relative to a user-defined external reference frame ext (e.g., the worldcoordinate frame or the robot’s mounting point). It is important that the pose Textrobot of the user-defined
robot frame w.r.t. this frame is observable during the calibration routine. The result of the calibrationprocess is the desired calibration transformation Textcamera, i.e., the pose of the camera frame in the user-defined external reference frame ext.

Basler AGManual: rc_visard 171 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

robot

camera

robot

camera

Fig. 6.23: Alternate mounting options for attaching the calibration grid to the robot
Additional user input is required if the movement of the robot is constrained and the robot canrotate the Tool Center Point (TCP) only around one axis. This is typically the case for robots withfour Degrees Of Freedom (4DOF) that are often used for palletizing tasks. In this case, the usermust specify which axis of the robot frame is the rotation axis of the TCP. Further, the signedoffset from the TCP to the visible surface of the calibration grid along the TCP rotation axis has tobe provided. The grid must be mounted such that the TCP rotation axis is orthogonal to the grid.Fig. 6.24 illustrates the situation.

ext

camera

T robot
ext

Tcamera
ext

calibration
grid

robot

TCP rotation axis

TCP offset

Fig. 6.24: In case of a 4DOF robot, the TCP rotation axis and the offset from the TCP to the visible surfaceof the grid along the TCP rotation axis must be provided. In the illustrated case, this offset is negative.

6.4.1.3 Calibration routine

The hand-eye calibration can be performed manually using the Web GUI (Section 7.1) or programmati-cally via the REST-API interface (Section 7.3). The general calibration routine will be described by follow-ing the steps of the hand-eye calibration wizard provided on the Web GUI. This wizard can be found inthe rc_visard’s Web GUI under Configuration → Hand-Eye Calibration. References to the correspondingREST-API calls are provided at the appropriate places.
Step 1: Hand-Eye Calibration Status

The starting page of the hand-eye calibrationwizard shows the current status of the hand-eye calibration.If a hand-eye calibration is saved on the rc_visard, the calibration transformation is displayed here (see
Basler AGManual: rc_visard 172 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Fig. 6.25).

Fig. 6.25: Current status of the hand-eye calibration in case a hand-eye calibration is saved

To query the hand-eye calibration status programmatically, the module’s REST-API offers the
get_calibration service call (see Services, Section 6.4.1.5). An existing hand-eye calibration can beremoved by pressing Remove Calibration or using remove_calibration in the REST-API (see Services,Section 6.4.1.5).
To start a new hand-eye calibration, click on Perform Hand-Eye Calibration or Next.
Step 2: Checking Grid Detection

To achieve good calibration results, the images should be well exposed so that the calibration grid canbe detected accurately and reliably. In this step, the grid detection can be checked and the camera set-tings can be adjusted if necessary. In case parts of the calibration grid are overexposed, the respectivesquares of the calibration grid will be highlighted in red. A successful grid detection is visualized bygreen check marks on every square of the calibration grid and a thick green border around the grid asshown in Fig. 6.26. However, to allow for more robust automatic hand-eye calibration, the grid detectionwill also be successful, if up to three squares of the calibration grid cannot be detected.

Basler AGManual: rc_visard 173 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Fig. 6.26: Checking the calibration grid detection

Step 3: Record Poses

In this step, the user records images of the calibration grid at several different robot poses. These posesmust each ensure that the calibration grid is completely visible in the left camera image or at most threesquares are missing. Furthermore, the robot poses need to be selected properly to achieve a varietyof different perspectives for the camera to perceive the calibration grid. Fig. 6.27 shows a schematicrecommendation of four different grid positions which should be recorded from a close and a far pointof view, resulting in eight images for the calibration.

Basler AGManual: rc_visard 174 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Fig. 6.27: Recommended views on the calibration grid during the calibration procedure. In case of a4DOF robot, other views have to be chosen, which should be as different as possible.

Warning: Calibration quality, i.e., the accuracy of the calculated calibration result, depends on thecalibration-grid views provided. The more diverse the perspectives are, the better is the calibration.Choosing very similar views, i.e., varying the robot pose only slightly before recording a new calibra-tion pose, may lead to inaccurate estimation of the desired calibration transformation.
After the robot reaches each calibration pose, the corresponding pose Textrobot of the user-defined robotframe in the user-defined external reference frame ext needs to be reported to the hand-eye calibrationmodule. For this purpose, the module offers different slots to store the reported poses and the corre-sponding left camera images. All filled slots will then be used to calculate the desired calibration trans-formation between the camera frame and either the user-defined robot frame (robot-mounted camera)or the user-defined external reference frame ext (static camera).
In the Web GUI, the user can choose between many different pose formats for providing the calibrationposes (see Pose formats, Section 12.1). When calibrating using the REST-API, the poses are always givenin XYZ+quaternion. The Web GUI offers eight slots (Close View 1, Close View 2, etc.) for the user to fillmanually with robot poses. Next to each slot, a figure suggests a respective dedicated viewpoint on thegrid. For each slot, the robot should be operated to achieve the suggested view.

Basler AGManual: rc_visard 175 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Fig. 6.28: Filling the first slot in the hand-eye calibration process for a statically mounted camera
To record a calibration pose, click on Set Pose for the respective slot and enter the robot frame’s poseinto the respective text fields. The pose is then stored with the corresponding camera image by clickingthe Take Picture to Proceed button. This will save the calibration pose in the respective slot.
To transmit the poses programmatically, the module’s REST-API offers the set_pose service call (see
Services, Section 6.4.1.5).
Note: The user’s acquisition of robot pose data depends on the robot model and manufacturer – itmight be read from a teaching or handheld device, which is shipped with the robot.

Warning: Please be careful to correctly and accurately enter the values; even small variations ortypos may lead to calibration-process failure.
The Web GUI displays the currently saved poses (only with slot numbers from 0 to 7) with their camera
Basler AGManual: rc_visard 176 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

images and also allows to delete them by clicking Delete Pose to remove a single pose, or clicking
Clear all Poses to remove all poses. In the REST-API the currently stored poses can be retrieved via
get_poses and removed via delete_poses for single poses or reset_calibration for removing all poses(see Services, Section 6.4.1.5).
When at least four poses are set, the user can continue to the computation of the calibration result bypressing Next.
Note: To successfully calculate the hand-eye calibration transformation, at least four different robotcalibration poses need to be reported and stored in slots. However, to prevent errors induced bypossible inaccurate measurements, at least eight calibration poses are recommended.

Step 4: Compute Calibration

Before computing the calibration result, the user has to provide the correct calibration parameters. Theseinclude the exact calibration grid dimensions and the sensor mounting type. The Web GUI also offerssettings for calibrating 4DOF robots. In this case, the rotation axis, as well as the offset from the TCPto the camera coordinate system (robot-mounted camera) or grid surface (statically mounted camera)must be given. For the REST-API, the respective parameters are listed in Parameters (Section 6.4.1.4).

Fig. 6.29: Defining hand-eye calibration parameters and computing the calibration result via the
rc_visard’s Web GUI

Basler AGManual: rc_visard 177 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

When the parameters are correct, the desired calibration transformation can be computed from the col-lected poses and camera images by clicking Compute Calibration. The REST-API offers this functionalityvia the calibrate service call (see Services, Section 6.4.1.5).
Depending on the way the camera ismounted, the calibration result contains the transformation (i.e., thepose) between the camera frame and either the user-defined robot frame (robot-mounted camera) or theuser-defined external reference frame ext (statically mounted camera); see Camera mounting (Section6.4.1.2).
To enable users to judge the quality of the resulting calibration transformation, the translational androtational calibration errors are reported, which are computed from the variance of the calibration result.
If the calibration error is not acceptable, the user can change the calibration parameters and recomputethe result, or return to step 3 of the calibration procedure and add more poses or update poses.
To save the calibration result, press Save Calibration or use the REST-API save_calibration service call(see Services, Section 6.4.1.5).
6.4.1.4 Parameters

The hand-eye calibrationmodule is called rc_hand_eye_calibration in the REST-API and is representedin the Web GUI (Section 7.1) under Configuration → Hand-Eye Calibration. The user can change the cali-bration parameters there or use the REST-API interface (Section 7.3).
Parameter overview

This module offers the following run-time parameters:
Table 6.36: The rc_hand_eye_calibration module’s run-time pa-rameters

Name Type Min Max Default Description
grid_height float64 0.0 10.0 0.0 The height of the calibration pattern inmeters
grid_width float64 0.0 10.0 0.0 The width of the calibration pattern inmeters
robot_mounted bool false true true Whether the camera is mounted on therobot
tcp_offset float64 -10.0 10.0 0.0 Offset from TCP along tcp_rotation_axis
tcp_rotation_axis int32 -1 2 -1 -1 for off, 0 for x, 1 for y, 2 for z

Description of run-time parameters

The parameter descriptions are given with the corresponding Web GUI names in brackets.
grid_width (Width)

Width of the calibration grid in meters. The width should be given with a very high accuracy,preferably with sub-millimeter accuracy.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/parameters?
→˓grid_width=<value>

API version 1 (deprecated)

Basler AGManual: rc_visard 178 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_width=<value>

grid_height (Height)

Height of the calibration grid in meters. The height should be given with a very high accuracy,preferably with sub-millimeter accuracy.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/parameters?
→˓grid_height=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?grid_height=<value>

robot_mounted (Sensor Mounting)

If set to true, the camera is mounted on the robot. If set to false, the camera is mountedstatically and the calibration grid is mounted on the robot.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/parameters?
→˓robot_mounted=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?robot_mounted=<value>

tcp_offset (TCP Offset)

The signed offset from the TCP to the camera coordinate system (robot-mounted sensor) orthe visible surface of the calibration grid (statically mounted sensor) along the TCP rotationaxis in meters. This is required if the robot’s movement is constrained and it can rotate itsTCP only around one axis (e.g., 4DOF robot).
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/parameters?
→˓tcp_offset=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_offset=<value>

tcp_rotation_axis (TCP Rotation Axis)

The axis of the robot frame around which the robot can rotate its TCP. 0 is used for X, 1 for Yand 2 for the Z axis. This is required if the robot’s movement is constrained and it can rotate

Basler AGManual: rc_visard 179 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

its TCP only around one axis (e.g., 4DOF robot). -1 means that the robot can rotate its TCParound two independent rotation axes. tcp_offset is ignored in this case.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/parameters?
→˓tcp_rotation_axis=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/parameters?tcp_rotation_axis=
→˓<value>

6.4.1.5 Services

The REST-API service calls offered to programmatically conduct the hand-eye calibration and to restorethis module’s parameters are explained below.
get_calibration

returns the hand-eye calibration currently stored on the rc_visard.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/get_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_calibration

Request

This service has no arguments.
Response

The field error gives the calibration error in pixels which is computed from the translationalerror translation_error_meter and the rotational error rotation_error_degree. This valueis only given for compatibility with older versions. The translational and rotational errorsshould be preferred.
Table 6.37: Return codes of the get_calibration service call

status success Description0 true returned valid calibration pose2 false calibration result is not available
The definition for the response with corresponding datatypes is:
{

"name": "get_calibration",
"response": {
"error": "float64",
"message": "string",

(continues on next page)

Basler AGManual: rc_visard 180 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

(continued from previous page)
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",
"status": "int32",
"success": "bool",
"translation_error_meter": "float64"

}
}

remove_calibration

removes the persistent hand-eye calibration on the rc_visard. After this call the
get_calibration service reports again that no hand-eye calibration is available. This ser-vice call will also delete all the stored calibration poses and corresponding camera imagesin the slots.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/remove_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/remove_calibration

Request

This service has no arguments.
Response

Table 6.38: Return codes of the get_calibration service call
status success Description0 true removed persistent calibration, device reports as uncalibrated1 true no persistent calibration found, device reports as uncalibrated2 false could not remove persistent calibration

The definition for the response with corresponding datatypes is:
{

"name": "remove_calibration",
"response": {
"message": "string",

(continues on next page)

Basler AGManual: rc_visard 181 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

(continued from previous page)
"status": "int32",
"success": "bool"

}
}

set_pose

allows to provide a robot pose as calibration pose to the hand-eye calibration routine andrecords the current image of the calibration grid.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/set_pose

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_pose

Request

The slot argument is used to assign unique numbers to the different calibration poses. Therange for slot is from 0 to 15. At each instant when set_pose is called, an image is recorded.This service call fails if the grid was undetectable in the current image.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "uint32"

}
}

Response

Basler AGManual: rc_visard 182 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Table 6.39: Return codes of the set_pose service call
status success Description1 true pose stored successfully3 true pose stored successfully; collected enough poses for calibration,i.e., ready to calibrate4 false calibration grid was not detected, e.g., not fully visible in cameraimage8 false no image data available12 false given orientation values are invalid13 false invalid slot number

The field overexposed indicates if parts of the calibration grid were overexposed in this im-age.
The definition for the response with corresponding datatypes is:
{

"name": "set_pose",
"response": {
"message": "string",
"overexposed": "bool",
"status": "int32",
"success": "bool"

}
}

get_poses

returns the robot poses that are currently stored for the hand-eye calibration routine.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/get_poses

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/get_poses

Request

This service has no arguments.
Response

Table 6.40: Return codes of the get_poses service call
status success Description0 true stored poses are returned1 true no calibration pose available

The field overexposed indicates if parts of the calibration grid were overexposed in this im-age.
The definition for the response with corresponding datatypes is:

Basler AGManual: rc_visard 183 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

{
"name": "get_poses",
"response": {
"message": "string",
"poses": [

{
"overexposed": "bool",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"slot": "uint32"

}
],
"status": "int32",
"success": "bool"

}
}

delete_poses

deletes the calibration poses and corresponding images with the specified slots.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/delete_

→˓poses

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/delete_poses

Request

The slots argument specifies which calibration poses should be deleted. If no slots areprovided, nothing will be deleted.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"slots": [

"uint32"
]

}
}

Response

Basler AGManual: rc_visard 184 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Table 6.41: Return codes of the delete_poses service call
status success Description0 true poses successfully deleted1 true no slots given

The definition for the response with corresponding datatypes is:
{

"name": "delete_poses",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

reset_calibration

deletes all previously provided poses and corresponding images. The last saved calibrationresult is reloaded. This service might be used to (re-)start the hand-eye calibration fromscratch.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/reset_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_calibration

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_calibration",
"response": {

"message": "string",
"status": "int32",
"success": "bool"

}
}

calibrate

calculates and returns the hand-eye calibration transformation with the robot poses config-ured by the set_pose service.
Details

Basler AGManual: rc_visard 185 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

save_calibrationmust be called to make the calibration available for other modules via the
get_calibration service call and to store it persistently.
Note: For calculating the hand-eye calibration transformation at least four robot calibra-tion poses are required (see set_pose service). However, eight calibration poses are rec-ommended.

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/calibrate

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/calibrate

Request

This service has no arguments.
Response

The field error gives the calibration error in pixels which is computed from the translationalerror translation_error_meter and the rotational error rotation_error_degree. This valueis only given for compatibility with older versions. The translational and rotational errorsshould be preferred.
Table 6.42: Return codes of the calibrate service call

status success Description0 true calibration successful, returned calibration result1 false not enough poses to perform calibration2 false calibration result is invalid, please verify the input data3 false given calibration grid dimensions are not valid4 false insufficient rotation, tcp_offset and tcp_rotation_axis must bespecified5 false sufficient rotation available, tcp_rotation_axis must be set to -16 false poses are not distinct enough from each other
The definition for the response with corresponding datatypes is:
{

"name": "calibrate",
"response": {

"error": "float64",
"message": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool",
"rotation_error_degree": "float64",

(continues on next page)

Basler AGManual: rc_visard 186 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

(continued from previous page)
"status": "int32",
"success": "bool",
"translation_error_meter": "float64"

}
}

save_calibration

persistently saves the result of hand-eye calibration to the rc_visard and overwrites the ex-isting one. The stored result can be retrieved any time by the get_calibration service. Thisservice call will also delete all the stored calibration poses and corresponding camera im-ages in the slots.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/save_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/save_calibration

Request

This service has no arguments.
Response

Table 6.43: Return codes of the save_calibration service call
status success Description0 true calibration saved successfully1 false could not save calibration file2 false calibration result is not available

The definition for the response with corresponding datatypes is:
{

"name": "save_calibration",
"response": {

"message": "string",
"status": "int32",
"success": "bool"

}
}

set_calibration

sets the hand-eye calibration transformation with arguments of this call.
Details

The calibration transformation is expected in the same format as returned by the calibrateand get_calibration calls. The given calibration information is also stored persistently onthe sensor by internally calling save_calibration.

Basler AGManual: rc_visard 187 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/set_

→˓calibration

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/set_calibration

Request

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"robot_mounted": "bool"

}
}

Response

Table 6.44: Return codes of the set_calibration service call
status success Description0 true setting the calibration transformation was successful12 false given orientation values are invalid

The definition for the response with corresponding datatypes is:
{

"name": "set_calibration",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

reset_defaults

restores and applies the default values for this module’s parameters (“factory reset”). Doesnot affect the calibration result itself or any of the slots saved during calibration. Only pa-rameters such as the grid dimensions and the mount type will be reset.
Details

This service can be called as follows.

Basler AGManual: rc_visard 188 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services/reset_

→˓defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_hand_eye_calibration/services/reset_defaults

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.4.2 CollisionCheck

6.4.2.1 Introduction

The CollisionCheck module is an optional on-board module of the rc_visard and is licensed with anyof the modules ItemPick and BoxPick (Section 6.3.3) or SilhouetteMatch (Section 6.3.4). Otherwise itrequires a separate CollisionCheck license (Section 8.7) to be purchased.
The module provides an easy way to check if a gripper is in collision with a load carrier,
or other detected objects (only in combination with SilhouetteMatch (Section 6.3.4)). It is integratedwith the ItemPick and BoxPick (Section 6.3.3) and SilhouetteMatch (Section 6.3.4) modules, but can beused as standalone product. The models of the grippers for collision checking have to be defined in the
GripperDB (Section 6.5.3) module.
Warning: Collisions are checked only between the load carrier and the gripper, not the robot itself,the flange, other objects or the item located in the robot gripper. Only in combination with Silhou-
etteMatch (Section 6.3.4), and only in case the selected template contains a collision geometry and
check_collisions_with_matches is enabled in the respective detection module, also collisions be-tween the gripper and other detected objects are checked. Collisions with objects that cannot bedetected will not be checked.

Table 6.45: Specifications of the CollisionCheck module
Collision checking with detected load carrier, detected objects (only

SilhouetteMatch (Section 6.3.4)), baseplane (only SilhouetteMatch,Section 6.3.4)Collision checking available in ItemPick and BoxPick (Section 6.3.3), SilhouetteMatch (Section6.3.4)

Basler AGManual: rc_visard 189 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

6.4.2.2 Collision checking

Stand-alone collision checking

The check_collisions service call triggers collision checking between the chosen gripper and the pro-vided load carriers for each of the provided grasps. Checking collisionswith other objects is not possiblewith the stand-alone check_collisions service. The CollisionCheck module checks if the chosen grip-per is in collision with at least one of the load carriers, when the TCP of the gripper is positioned inthe grasp position. It is possible to check the collision with multiple load carriers simultaneously. Thegrasps which are in collision with any of the defined load carriers will be returned as colliding.
The pre_grasp_offset can be used for additional collision checking. The pre-grasp offset 𝑃𝑜𝑓𝑓 is theoffset between the grasp point 𝑃𝑔𝑟𝑎𝑠𝑝 and the pre-grasp position 𝑃𝑝𝑟𝑒 in the grasp’s coordinate frame(see Fig. 6.30). If the pre-grasp offset is defined, the grasp will be detected as colliding if the gripper is incollision at any point during motion from the pre-grasp position to the grasp position (assuming a linearmovement).

y

z

x

Ppre

Pgrasp
y

z
x

Poff=Pgrasp-Ppre

Fig. 6.30: Illustration of the pre-grasp offset parameter for collision checking. In this case, the pre-graspposition as well as the grasp position are collision free. However, the trajectory between these poseswould have collisions. Thus, this grasp pose would be marked as colliding.

Collision checking within other modules

Collision checking is integrated in the following modules’ services:
• ItemPick and BoxPick (Section 6.3.3): compute_grasps (see compute_grasps for ItemPick, Section6.3.3.7 and compute_grasps for BoxPick, Section 6.3.3.7)
• SilhouetteMatch (Section 6.3.4): detect_object (see detect_object, Section 6.3.4.11)

Each of these services can take a collision_detection argument consisting of the gripper_id of thegripper and optionally the pre_grasp_offset as described in the previous section Stand-alone collision
checking (Section 6.4.2.2). When the collision_detection argument is given, these services only returnthe grasps at which the gripper is not in collision with the load carrier detected by these services. Forthis, a load carrier ID has to be provided to these services as well.
Only for SilhouetteMatch (Section 6.3.4), and only in case the selected template contains a collisiongeometry and check_collisions_with_matches is enabled in the respective detection module, grasppoints at which the gripper would be in collision with other detected objects are also rejected. Theobject on which the grasp point to be checked is located, is excluded from the collision check.
When a gripper is defined for a grasp point in the object template for SilhouetteMatch (Section 6.3.4),then this gripper will be used for collision checking at that specific grasp point instead of the gripperdefined in the collision_detection argument of the detect_object service (see Setting of grasp points,Section 6.3.4.4). The grasps returned by the detect_object service contain a flag collision_checked,indicating whether the grasp was checked for collisions, and the field gripper_id. If collision_checked
Basler AGManual: rc_visard 190 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

is true, the returned gripper_id contains the ID of the gripper that was used for the collision check.That is the ID of the gripper defined for that specific grasp, or, if empty, the gripper that was given in the
collision_detection argument of the request. If collision_checked is false, the returned gripper_idis the gripper ID that was defined for that grasp.
In SilhouetteMatch, Section 6.3.4, collisions between the gripper and the base plane can be checked, if
check_collisions_with_base_plane is enabled in SilhouetteMatch.
Warning: Collisions are checked only between the load carrier and the gripper, not the robot itself,the flange, other objects or the item located in the robot gripper. Only in combination with Silhou-
etteMatch (Section 6.3.4), and only in case the selected template contains a collision geometry and
check_collisions_with_matches is enabled in the respective detection module, also collisions be-tween the gripper and other detected objects are checked. Collisions with objects that cannot bedetected will not be checked.

The collision-check results are affected by run-time parameters, which are listed and explained furtherbelow.
6.4.2.3 Parameters

The CollisionCheck module is called rc_collision_check in the REST-API and is represented in the
Web GUI (Section 7.1) under Configuration → CollisionCheck. The user can explore and configure the
rc_collision_check module’s run-time parameters, e.g. for development and testing, using the WebGUI or the REST-API interface (Section 7.3).
Parameter overview

This module offers the following run-time parameters:
Table 6.46: The rc_collision_check module’s run-time parame-ters

Name Type Min Max Default Description
check_bottom bool false true true Whether to enable collision checkingwith the bottom of the load carrier
check_flange bool false true true Whether all grasps with the flangeinside the load carrier should bemarked as colliding
collision_dist float64 0.0 0.1 0.01 Minimum distance in meters betweenany element of the gripper and theload carrier or the base plane (onlySilhouetteMatch) for a collision-freegrasp

Description of run-time parameters

Each run-time parameter is represented by a row in the Web GUI’s Settings section under Configuration
→ CollisionCheck. The name in the Web GUI is given in brackets behind the parameter name:
collision_dist (Collision Distance)

Minimal distance in meters between any part of the gripper and the load carrier and/or thebase plane (only SilhouetteMatch) for a grasp to be considered collision free.

Basler AGManual: rc_visard 191 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Note: The collision distance is not applied when checking collisions between the gripperand other detected objects. It is not applied when checking if the flange is inside the loadcarrier (check_flange), either.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/parameters?collision_

→˓dist=<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?collision_dist=<value>

check_flange (Check Flange)

Performs an additional safety check as described in Robot flange radius (Section 6.5.3.2).If this parameter is set, all grasps in which any part of the robot’s flange is inside the loadcarrier are marked as colliding.
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/parameters?check_flange=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_flange=<value>

check_bottom (Check Bottom)

When this check is enabled the collisions will be checked not only with the side walls of theload carrier but also with its bottom. It might be necessary to disable this check if the TCPis inside the collision geometry (e.g. is defined inside a suction cup).
Via the REST-API, this parameter can be set as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/parameters?check_bottom=
→˓<value>

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/parameters?check_bottom=<value>

6.4.2.4 Status values

The rc_collision_check module reports the following status values:
Table 6.47: The rc_collision_check module status values

Name Description
last_evaluated_grasps Number of evaluated grasps
last_collision_free_grasps Number of collision-free grasps
collision_check_time Collision checking runtime

Basler AGManual: rc_visard 192 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

6.4.2.5 Services

The user can explore and call the rc_collision_check module’s services, e.g. for development andtesting, using REST-API interface (Section 7.3) or the rc_visard Web GUI (Section 7.1).
The CollisionCheck module offers the following services.
reset_defaults

Resets all parameters of the module to its default values, as listed in above table.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/services/reset_defaults

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

check_collisions (deprecated)

Triggers a collision check between a gripper and a load carrier.
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_collision_check/services/check_collisions

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_collision_check/services/check_collisions

Request

Required arguments:

Basler AGManual: rc_visard 193 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

grasps: list of grasps that should be checked.
load_carriers: list of load carriers against which the collision should be checked.The fields of the load carrier definition are described in Detection of load carri-
ers (Section 6.3.1.2). The position frame of the grasps and load carriers has tobe the same.
gripper_id: the id of the gripper that is used to check the collisions. The gripperhas to be configured beforehand.

Optional arguments:
pre_grasp_offset: the offset in meters from the grasp position to the pre-graspposition in the grasp frame. If this argument is set, the collisions will not only bechecked in the grasp point, but also on the path from the pre-grasp position to thegrasp position (assuming a linear movement).

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"grasps": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"gripper_id": "string",
"load_carriers": [

{
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Basler AGManual: rc_visard 194 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

(continued from previous page)
"z": "float64"

}
},
"pose_frame": "string",
"rim_thickness": {
"x": "float64",
"y": "float64"

}
}

],
"pre_grasp_offset": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}

Response

colliding_grasps: list of grasps in collision with one or more load carriers.
collision_free_grasps: list of collision-free grasps.
return_code: holds possible warnings or error codes and messages.
The definition for the response with corresponding datatypes is:
{

"name": "check_collisions",
"response": {

"colliding_grasps": [
{

"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"collision_free_grasps": [

{
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",

(continues on next page)

Basler AGManual: rc_visard 195 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

(continued from previous page)
"z": "float64"

}
},
"pose_frame": "string",
"uuid": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_gripper (deprecated)

Persistently stores a gripper on the rc_visard.
API version 2

This service is not available in API version 2. Use set_gripper (Section 6.5.3.3) in
rc_gripper_db instead.
API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_collision_check/services/set_gripper

The definitions of the request and response are the sameas described in set_gripper (Section6.5.3.3) in rc_gripper_db.
get_grippers (deprecated)

Returns the configured grippers with the requested gripper_ids.
API version 2

This service is not available in API version 2. Use get_grippers (Section 6.5.3.3) in
rc_gripper_db instead.
API version 1 (deprecated)

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_collision_check/services/get_grippers

The definitions of the request and response are the same as described in
get_grippers (Section 6.5.3.3) in rc_gripper_db.

delete_grippers (deprecated)

Deletes the configured grippers with the requested gripper_ids.
API version 2

This service is not available in API version 2. Use delete_grippers (Section 6.5.3.3) in
rc_gripper_db instead.
API version 1 (deprecated)

Basler AGManual: rc_visard 196 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

This service can be called as follows.
PUT http://<host>/api/v1/nodes/rc_collision_check/services/delete_grippers

The definitions of the request and response are the same as described in
delete_grippers (Section 6.5.3.3) in rc_gripper_db.

6.4.2.6 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. Asuccessful service returns with a return_code value of 0. Negative return_code values indicate that theservice failed. Positive return_code values indicate that the service succeeded with additional informa-tion. The smaller value is selected in case a service has multiple return_code values, but all messagesare appended in the return_code message.
The following table contains a list of common codes:

Table 6.48: Return codes of the CollisionCheck services
Code Description0 Success-1 An invalid argument was provided-7 Data could not be read or written to persistent storage-9 No valid license for the module-10 New gripper could not be added as the maximum storage capacity of grippers has beenexceeded10 The maximum storage capacity of grippers has been reached11 Existing gripper was overwritten

6.4.3 Camera calibration

The camera calibration module is a base module which is available on every rc_visard.
To use the camera as measuring instrument, camera parameters such as focal length, lens distortion,and the relationship of the cameras to each other must be exactly known. The parameters are deter-mined by calibration and used for image rectification (see Rectification, Section 6.1.1.1), which is thebasis for all other image processing modules.
The rc_visard is calibrated at production time. Nevertheless, checking calibration and recalibrationmightbe necessary if the rc_visard was exposed to strong mechanical impact.
The camera calibration module is responsible for checking calibration and calibrating.
6.4.3.1 Self-calibration

The camera calibration module automatically runs in self-calibration mode at a low frequency in thebackground. In this mode, the rc_visard observes the alignment of image rows of both rectified images.A mechanical impact, such as one caused by dropping the rc_visard, might result in a misalignment. If asignificant misalignment is detected, then it is automatically corrected. After each reboot and after eachcorrection, the current self-calibration offset is reported in the cameramodule’s log file (seeDownloading
log files, Section 8.8) as:

“rc_stereocalib: Current self-calibration offset is 0.00, update counter is 0”

The update counter is incremented after each automatic correction. It is reset to 0 after manual recali-bration of the rc_visard.
Under normal conditions, such as the absence of mechanical impact on the rc_visard, self-calibrationshould never occur. Self-calibration allows the rc_visard to work normally even after misalignment is

Basler AGManual: rc_visard 197 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

detected, since it is automatically corrected. Nevertheless, checking camera calibration manually isrecommended if the update counter is not 0.
6.4.3.2 Calibration process

Manual calibration can be done through the Web GUI (Section 7.1) under Configuration → Camera Cali-
bration. This page provides a wizard to guide the user through the calibration process.
Note: Camera calibration is normally unnecessary for the rc_visard since it is calibrated at productiontime. Therefore, calibration is only required after strong mechanical impacts, such as occur whendropping the rc_visard.

During calibration, the calibration grid must be detected in different poses. When holding the calibrationgrid, make sure that all black squares of the grid are completely visible and not occluded in both cameraimages. A green check mark overlays each correctly detected square. The correct detection of the gridis only possible if all of the black squares are detected. Some of the squares not being detected, or beingdetected only briefly might indicate bad lighting conditions, or a damaged grid. Squares in overexposedparts of the calibration grid are highlighted in red. In this case, the lighting conditions or exposure settingmust be adjusted. A thick green border around the calibration grid indicates that it was detected correctlyin both camera images.
Calibration settings

The quality of camera calibration heavily depends on the quality of the calibration grid. Calibration gridscan be obtained from Basler.

Fig. 6.31: Calibration settings
In the first step, the calibration grid must be specified. The Next button proceeds to the next step.

Basler AGManual: rc_visard 198 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Verify calibration

In the next step, the current calibration can be verified. To perform the verification, the grid must be heldsuch that it is simultaneously visible in both cameras. When the grid is detected, the calibration error isautomatically computed and the result is displayed on the screen.

Fig. 6.32: Verification of calibration

Note: To compute a meaningful calibration error, the grid should be held as close as possible to thecameras. If the grid only covers a small section of the camera images, the calibration error will alwaysbe less than when the grid covers the full image. For this reason, theminimal andmaximal calibrationerror during verification are shown in addition to the calibration error at the current grid position.
The typical calibration error is below 0.2 pixels. If the error is in this range, then the calibration procedurecan be skipped. If the calibration error is greater, the calibration procedure should be performed toguarantee full sensor performance. The button Next starts the procedure.
Warning: A large error during verification can be due to miscalibrated cameras, an inaccurate cal-ibration grid, or wrong grid width or height. In case you use a custom calibration grid, please make

Basler AGManual: rc_visard 199 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

sure that the grid is accurate and the entered grid width and height are correct. Otherwise, manualcalibration will actually decalibrate the cameras!

Calibrate

The camera’s exposure time should be set appropriately before starting the calibration. To achieve goodcalibration results, the images should be well-exposed and motion blur should be avoided. Thus, themaximum auto-exposure time should be as short as possible, but still allow a good exposure. Thecurrent exposure time is displayed below the camera images as shown in Fig. 6.34.
Full calibration consists of calibrating each camera individually (monocalibration) and then performinga stereo calibration to determine the relationship between them. In most cases, the intrinsic calibrationof each camera does not get corrupted. For this reason, monocalibration is skipped by default during arecalibration, but can be performed by clicking PerformMonocalibration in the Calibrate tab. This shouldonly be done if the result of the stereo calibration is not satisfactory.
Stereo calibration

During stereo calibration, both cameras are calibrated to each other to find their relative rotation andtranslation.
The camera images can also be displayed mirrored to simplify the correct positioning of the calibrationgrid.
First, the grid should be held as close as possible to the camera and very still. It must be fully visible inboth images and the cameras should look perpendicularly onto the grid. If the grid is not perpendicularto the line of sight of the cameras, this will be indicated by small green arrows pointing to the expectedpositions of the grid corners (see Fig. 6.33).

Fig. 6.33: Arrows indicating that the grid is not perpendicular to the camera’s line of sight during stereocalibration
The grid must be kept very still for detection. If motion blur occurs, the grid will not be detected. All gridcells that are drawn onto the image have to be covered by the calibration grid. This is visualized by fillingthe covered cells in green (see Fig. 6.34).
For the rc_visard all cells can be covered at once by holding the grid close enough.

Basler AGManual: rc_visard 200 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Fig. 6.34: Stereo calibration: Hold the grid as close as possible to fill all visualized cells

Note: If the check marks on the calibration grid all vanish, then either the camera does not lookperpendicularly onto the grid, or the grid is too far away from the camera.
Once all grid cells are covered, they disappear and a single far cell is visualized. Now, the grid shouldbe held as far as possible from the cameras, so that the small cell is covered. Arrows will indicate if thegrid is still too close to the camera. When the grid is successfully detected at the far pose, the cell isfilled in green and the result can be computed (see Fig. 6.35).

Basler AGManual: rc_visard 201 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

Fig. 6.35: Holding the grid far away during stereo calibration
If stereo calibration yields an unsatisfactory calibration error, then calibration should be repeated withmonocalibration (see next Section Monocalibration).
Monocalibration

Monocalibration is the intrinsic calibration of each camera individually. Since the intrinsic calibrationnormally does not get corrupted, the monocalibration should only be performed if the result of stereocalibration is not satisfactory.
Click Perform Monocalibration in the Calibrate tab to start monocalibration.
For monocalibration, the grid has to be held in certain poses. The arrows from the grid corners to thegreen areas indicate that all grid corners should be placed inside the green areas. The green areasare called sensitive areas. The Size of Sensitive Area slider can control their size to ease calibration.However, please be aware that increasing their size too much may result in slightly lower calibrationaccuracy.
Holding the grid upside down is a commonmistakemade during calibration. Spotting this in this case iseasy because the green lines from the grid corners into the green areas will cross each other as shownin Fig. 6.36.

Fig. 6.36: Wrongly holding the grid upside down leads to crossed green lines.

Note: Calibration might appear cumbersome as it involves holding the grid in certain predefinedposes. However, these poses are required to ensure an unbiased, high-quality calibration result.
Basler AGManual: rc_visard 202 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

The monocalibration process involves five poses for each camera as shown in Fig. 6.37.

Fig. 6.37: Poses required for monocamera calibration
After the corners or sides of the grid are placed on top of the sensitive areas, the process automaticallyshows the next pose required. When the process is finished for the left camera, the same procedure isrepeated for the right one.
Continue with the guidelines given in the previous Section Stereo calibration.
Storing the calibration result

Clicking the Compute Calibration button finishes the process and displays the final result. The indicatedresult is the mean reprojection error of all calibration points. It is given in pixels and typically has a valuebelow 0.2.
Pressing Save Calibration applies the calibration and saves it to the device.
Note: The given result is the minimum error left after calibration. The real error is definitely not lessthan this, but could in theory be larger. This is true for every camera-calibration algorithm and the rea-son why we enforce holding the grid in very specific poses. Doing so ensures that the real calibrationerror cannot significantly exceed the reported error.

Warning: If a hand-eye calibration was stored on the rc_visard before camera calibration, the hand-eye calibration values could have become invalid. Please repeat the hand-eye calibration procedure.

6.4.3.3 Parameters

The module is called rc_stereocalib in the REST-API.
Note: The camera calibration module’s available parameters and status values are for internal useonly and may change in the future without further notice. Calibration should only be performedthrough the Web GUI as described above.

6.4.3.4 Services

Note: The camera calibration module’s available service calls are for internal use only and maychange in the future without further notice. Calibration should only be performed through the WebGUI as described above.

Basler AGManual: rc_visard 203 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

6.4.4 IO and Projector Control

The IOControl module is an on-board module of the rc_visard.
The IOControl module allows reading the status of the general purpose digital inputs and controlling thedigital general purpose outputs (GPIOs) of the rc_visard. The outputs can be set to LOW or HIGH, orconfigured to be HIGH for the exposure time of every image or every second image.
The purpose of the IOControl module is the control of an external light source or a projector, which isconnected to one of the rc_visard’s GPIOs to be synchronized by the image acquisition trigger. In casea pattern projector is used to improve stereo matching, the intensity images also show the projectedpattern, whichmight be a disadvantage for image processing tasks that are based on the intensity image(e.g. edge detection). For this reason, the IOControl module allows setting GPIO outputs to HIGH for theexposure time of every second image, so that intensity images without the projected pattern are alsoavailable.
Note: For more details on the rc_visard’s GPIOs please refer to Wiring, Section 3.5.

6.4.4.1 Parameters

The IOControl module is called rc_iocontrol in the REST-API and is represented in theWeb GUI (Section7.1) under Configuration → IOControl. The user can change the parameters via the Web GUI, the REST-
API interface (Section 7.3), or via GigE Vision using the DigitalIOControl parameters LineSelector and
LineSource (Category: DigitalIOControl, Section 7.2.3.4).
Parameter overview

This module offers the following run-time parameters:
Table 6.49: The rc_iocontrol module’s run-time parameters

Name Type Min Max Default Description
out1_mode string - - Low Out1 mode: [Low, High, ExposureActive,ExposureAlternateActive]
out2_mode string - - Low Out2 mode: [Low, High, ExposureActive,ExposureAlternateActive]

Description of run-time parameters

out1_mode and out2_mode (Out1 and Out2)

The output modes for GPIO Out 1 and Out 2 can be set individually:
Low sets the output permanently to LOW. This is the factory default.
High sets the output permanently to HIGH.
ExposureActive sets the output to HIGH for the exposure time of every image.
ExposureAlternateActive sets the output to HIGH for the exposure time of everysecond image.
Via the REST-API, this parameter can be set as follows.

API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_iocontrol/parameters/parameters?<out1_

→˓mode|out2_mode>=<value>

Basler AGManual: rc_visard 204 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/parameters?<out1_mode|out2_mode>=<value>

Fig. 6.38 shows which images are used for stereo matching and transmission via GigE Vision in
ExposureActive mode with a user-defined frame rate of 8 Hz.
Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 6.38: Example of using the ExposureActive mode for GPIO Out 1 with a user-defined frame rate of8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is HIGH for the exposure time of everyimage. A disparity image is computed for camera images that are sent out via GigE Vision according tothe user-defined frame rate.
The mode ExposureAlternateActive is meant to be used when an external random dot projector isconnected to the rc_visard’s GPIO Out 1. When setting Out 1 to ExposureAlternateActive, the stereo
matching (Section 6.1.2) module only uses images with GPIO Out 1 being HIGH, i.e. projector is on. Themaximum frame rate that is used for stereo matching is therefore half of the frame rate configuredby the user (see FPS, Section 6.1.1.3). All modules which make use of the intensity image, like TagDe-
tect (Section 6.3.2) and ItemPick (Section 6.3.3), use the intensity images with GPIO Out 1 being LOW,i.e. projector is off. Fig. 6.39 shows an example.
Internal acquisition

Camera image

GPIO Out 1
Disparity image

Fig. 6.39: Example of using the ExposureAlternateActive mode for GPIO Out 1 with a user-definedframe rate of 8 Hz. The internal image acquisition is always 25 Hz. GPIO Out 1 is HIGH for the exposuretime of every second image. A disparity image is computed for images where Out 1 is HIGH and that aresent out via GigE Vision according to the user-defined frame rate. In ExposureAlternateActive mode,intensity images are always transmitted pairwise: one with GPIO Out 1 HIGH, for which a disparity imagemight be available, and one with GPIO Out 1 LOW.

Note: In ExposureAlternateActive mode, an intensity image with GPIO Out 1 being HIGH (i.e. withprojection) is always 40 ms away from an intensity image with Out 1 being LOW (i.e. without pro-jection), regardless of the user-defined frame rate. This needs to be considered when synchronizingdisparity images and camera images without projection in this special mode.
The functionality can also be controlled by the DigitalIOControl parameters of the GenICam interface(Category: DigitalIOControl, Section 7.2.3.4).
6.4.4.2 Services

Each service response contains a return_code, which consists of a value plus an optional message. Asuccessful service returns with a return_code value of 0. Negative return_code values indicate that theservice failed. Positive return_code values indicate that the service succeeded with additional informa-tion.
The IOControl module offers the following services.

Basler AGManual: rc_visard 205 Rev: 24.01.1Status: Jan 29, 2024

6.4. Configuration modules

get_io_values

Retrieves the current state of the rc_visard’s general purpose inputs and outputs (GPIOs).
Details

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_iocontrol/services/get_io_values

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/get_io_values

Request

This service has no arguments.
Response

The returned timestamp is the time of measurement.
input_mask and output_mask are bit masks defining which bits are used for input and outputvalues, respectively.
values holds the values of the bits corresponding to input and output as given by the
input_mask and output_mask.
return_code holds possible warnings or error codes and messages. Possible return_codevalues are shown below.

Code Description0 Success-2 Internal error-9 License for IOControl is not available
The definition for the response with corresponding datatypes is:
{

"name": "get_io_values",
"response": {
"input_mask": "uint32",
"output_mask": "uint32",
"return_code": {
"message": "string",
"value": "int16"

},
"timestamp": {

"nsec": "int32",
"sec": "int32"

},
"values": "uint32"

}
}

reset_defaults

Restores and applies the default values for this module’s parameters (“factory reset”).
Details

Basler AGManual: rc_visard 206 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

This service can be called as follows.
API version 2

PUT http://<host>/api/v2/pipelines/0/nodes/rc_iocontrol/services/reset_defaults

API version 1 (deprecated)

PUT http://<host>/api/v1/nodes/rc_iocontrol/services/reset_defaults

Request

This service has no arguments.
Response

The definition for the response with corresponding datatypes is:
{

"name": "reset_defaults",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5 Database modules

The rc_visard provides several database modules which enable the user to configure global data whichis used in many detection modules, such as load carriers and regions of interest. Via the REST-API
interface (Section 7.3) the database modules are only available in API version 2.
The database modules are:

• LoadCarrierDB (rc_load_carrier_db, Section 6.5.1) allows setting, retrieving and deleting loadcarriers.
• RoiDB (rc_roi_db , Section 6.5.2) allows setting, retrieving and deleting 2D and 3D regions of in-terest.
• GripperDB (rc_gripper_db, Section 6.5.3) allows setting, retrieving and deleting grippers for col-lision checking.

6.5.1 LoadCarrierDB

6.5.1.1 Introduction

The LoadCarrierDB module (Load carrier database module) allows the global definition of load carriers,which can then be used in many detection modules. The specified load carriers are available for allmodules supporting load carriers on the rc_visard.
The LoadCarrierDB module is a base module which is available on every rc_visard.

Basler AGManual: rc_visard 207 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

Table 6.50: Specifications of the LoadCarrierDB module
Supported load carrier types 4-sided or 3-sidedSupported rim types solid rim, stepped rim or ledged rimMin. load carrier dimensions 0.1 m x 0.1 m x 0.05 mMax. load carrier dimensions 2 m x 2 m x 2 mMax. number of load carriers 50Load carriers available in ItemPick and BoxPick (Section 6.3.3) and SilhouetteMatch (Section6.3.4)Supported pose types no pose, orientation prior, exact poseSupported reference frames camera, external

6.5.1.2 Load carrier definition

A load carrier (bin) is a container with four walls, a floor and a rectangular rim, which can contain objects.It can be used to limit the volume in which to search for objects or grasp points.
A load carrier is defined by its outer_dimensions and inner_dimensions. The maximum
outer_dimensions are 2.0 meters in every dimension.
The origin of the load carrier reference frame is in the center of the load carrier’s outer box and its z axisis perpendicular to the load carrier’s floor pointing outwards (see Fig. 6.40).

x
yz

outer_dimensions.x
inner_dimensions.x

inn
er
_d
im
en
sio
ns
.y

ou
ter
_d
im
en
sio
ns
.y

inner_dim
ensions.z

outer_dim
ensions.z

Fig. 6.40: Load carrier with reference frame and inner and outer dimensions

Note: Typically, outer and inner dimensions of a load carrier are available in the specifications of theload carrier manufacturer.
The inner volume of the load carrier is defined by its inner dimensions, but includes a region of 10 cmheight above the load carrier, so that also items protruding from the load carrier are considered fordetection or grasp computation. Furthermore, an additional crop_distance is subtracted from the innervolume in every dimension, which acts as a safety margin and can be configured as run-time parameterin the LoadCarrier module (see Parameters, Section 6.3.1.5). Fig. 6.41 visualizes the inner volume of aload carrier. Only points which are inside this volume are considered for detections.

Basler AGManual: rc_visard 208 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

0.1 m

crop_distance

Fig. 6.41: Visualization of the inner volume of a load carrier. Only points which are inside this volume areconsidered for detections.
Since the load carrier detection is based on the detection of the load carrier’s rim, the rim geometrymust be specified if it cannot be determined from the difference between outer and inner dimensions. Aload carrier with a stepped rim can be defined by setting a rim_thickness. The rim thickness gives thethickness of the outer part of the rim in the x and y direction. When a rim thickness is given, an optional
rim_step_height can also be specified, which gives the height of the step between the outer and theinner part of the rim. When the step height is given, it will also be considered during collision checking(see CollisionCheck, Section 6.4.2). Examples of load carriers with stepped rims are shown in Fig. 6.42A, B. In addition to the rim_thickness and rim_step_height the rim_ledge can be specified for definingload carriers whose inner rim protrudes into the interior of the load carrier, such as pallet cages. The
rim_ledge gives the thickness of the inner part of the rim in the x and y direction. An example of a loadcarrier with a ledged rim is shown in Fig. 6.42 C.

ou
te

r_
di

m
en

sio
n

z

rim_thickness (x, y)

inner_dimension (x, y)

outer_dimension (x, y)

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

ou
te

r_
di

m
en

sio
n

z

rim_thickness (x, y)

inner_dimension (x, y)

outer_dimension (x, y)

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

rim_thickness (x, y)

rim_ledge (x, y)

ou
te

r_
di

m
en

sio
n

z

in
ne

r_
di

m
en

sio
n

z

rim
_s

te
p_

he
ig

ht

inner_dimension (x, y)

outer_dimension (x, y)

A B C

Fig. 6.42: Examples of load carriers with stepped rim (A, B) or ledged rim (C)
The different rim types are applicable to both, standard 4-sided and 3-sided load carriers. For a 3-sidedload carrier, the type must be THREE_SIDED. If the type is set to STANDARD or left empty, a 4-sided loadcarrier is specified. A 3-sided load carrier has one side that is lower than the other three sides. This
height_open_side ismeasured from the outer bottomof the load carrier. The open side is at the negativey-axis of the load carrier’s coordinate system. Examples of the two load carrier types are given in Fig.

Basler AGManual: rc_visard 209 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

6.43. The height of the lower side is only considered during collision checking and not required for thedetection of the load carrier.

x
yz

ou
ter

_d
im

en
sio

n y outer_dimension x

di
m

en
sio

n
z

ou
te

r_

inner_dimension x
in

ne
r_

di
m

en
sio

n
z

inn
er_

iim
en

sio
n y

x
yz

ou
ter

_d
im

en
sio

n y outer_dimension x

di
m

en
sio

n
z

ou
te

r_

inner_dimension x

in
ne

r_
di

m
en

sio
n

z

inn
er_

dim
en

sio
n y

he
ig

ht
_o

pe
n_

sid
e

A B

Fig. 6.43: Examples of a standard 4-sided load carrier (A) and a 3-sided load carrier (B)
A load carrier can be specified with a full 3D pose consisting of a position and an orientation quater-nion, given in a pose_frame. Based on the given pose_type this pose is either used as an orientationprior (pose_type is ORIENTATION_PRIOR or empty), or as the exact pose of the load carrier (pose_type is
EXACT_POSE).
In case the pose serves as orientation prior, the detected load carrier pose is guaranteed to have theminimum rotation with respect to the load carrier’s prior pose. This pose type is useful for detectingtilted load carriers and for resolving the orientation ambiguity in the x and y direction caused by thesymmetry of the load carrier model.
In case the pose type is set to EXACT_POSE, no load carrier detection will be performed on the scene data,but the given pose will be used in exactly the same way as if the load carrier is detected at that pose.This pose type is especially useful in cases where load carriers do not change their positions and/or arehard to detect (e.g. because their rim is too thin or the material is too shiny).
The rc_visard can persistently store up to 50 different load carrier models, each one identified by a dif-ferent id. The configuration of a load carrier model is normally performed offline, during the set up thedesired application. This can be done via the REST-API interface (Section 7.3) or in the rc_visard WebGUI.
Note: The configured load carrier models are persistent even over firmware updates and rollbacks.

6.5.1.3 Load carrier compartments

Some detection modules can make use of a load_carrier_compartment to further limit the volume forthe detection, for example ItemPick’s compute_grasps service (see 6.3.3.7). A load carrier compartmentis a box whose pose is defined as the transformation from the load carrier reference frame to the com-partment reference frame, which is located in the center of the compartment box (see Fig. 6.44). Theload carrier compartment is defined for each detection call separately and is not part of the load carrierdefinition in the LoadCarrierDB module.

Basler AGManual: rc_visard 210 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

x
yz

co
mp

art
me

nt
.bo

x.y

compartment.box.x

com
partm

ent.box.z

Fig. 6.44: Sample compartment inside a load carrier. The coordinate frame shown in the image is thereference frame of the compartment.
The compartment volume is intersected with the load carrier inner volume to compute the volume forthe detection. If this intersection should also contain the 10 cm region above the load carrier, the heightof the compartment box must be increased accordingly.
6.5.1.4 Interaction with other modules

Internally, the LoadCarrierDB module depends on, and interacts with other on-board modules as listedbelow.
Hand-eye calibration

In case the camera has been calibrated to a robot, the load carrier’s exact pose or orientation prior can beprovided in the robot coordinate frame by setting the corresponding pose_frame argument to external.
Two different pose_frame values can be chosen:

1. Camera frame (camera). The load carrier pose or orientation prior is provided in the camera frame,and no prior knowledge about the pose of the camera in the environment is required. This meansthat the configured load carriers move with the camera. It is the user’s responsibility to update theconfigured poses if the camera frame moves (e.g. with a robot-mounted camera).
2. External frame (external). The load carrier pose or orientation prior is provided in the externalframe, configured by the user during the hand-eye calibration process. The module relies on theon-board Hand-eye calibration module (Section 6.4.1) to retrieve the sensor mounting (static orrobot mounted) and the hand-eye transformation.

Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.
All pose_frame values that are not camera or external are rejected.

Basler AGManual: rc_visard 211 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

6.5.1.5 Services

The LoadCarrierDB module is called rc_load_carrier_db in the REST-API and is represented in theWeb
GUI (Section 7.1) under Database → Load Carriers. The user can explore and call the LoadCarrierDBmodule’s services, e.g. for development and testing, using the REST-API interface (Section 7.3) or theWeb GUI.
The LoadCarrierDB module offers the following services.
set_load_carrier

Persistently stores a load carrier on the rc_visard. All configured load carriers are persistentover firmware updates and rollbacks.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/set_load_carrier

Request

Details for the definition of the load_carrier type are given in Load carrier definition (Section6.5.1.2).
The field type is optional and accepts STANDARD and THREE_SIDED.
The field pose_type is optional and accepts NO_POSE, EXACT_POSE and ORIENTATION_PRIOR.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"load_carrier": {
"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {

"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"pose_type": "string",
"rim_ledge": {

"x": "float64",

(continues on next page)

Basler AGManual: rc_visard 212 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

(continued from previous page)
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "set_load_carrier",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_load_carriers

Returns the configured load carriers with the requested load_carrier_ids. If no
load_carrier_ids are provided, all configured load carriers are returned.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/get_load_carriers

Request

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"load_carrier_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "get_load_carriers",
"response": {
"load_carriers": [
{

"height_open_side": "float64",
"id": "string",
"inner_dimensions": {

(continues on next page)

Basler AGManual: rc_visard 213 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

(continued from previous page)
"x": "float64",
"y": "float64",
"z": "float64"

},
"outer_dimensions": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"pose_frame": "string",
"pose_type": "string",
"rim_ledge": {
"x": "float64",
"y": "float64"

},
"rim_step_height": "float64",
"rim_thickness": {

"x": "float64",
"y": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_load_carriers

Deletes the configured load carriers with the requested load_carrier_ids. All load carriersto be deleted must be explicitly stated in load_carrier_ids.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_load_carrier_db/services/delete_load_carriers

Request

The definition for the request arguments with corresponding datatypes is:
{

"args": {

(continues on next page)

Basler AGManual: rc_visard 214 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

(continued from previous page)
"load_carrier_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "delete_load_carriers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5.1.6 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. Asuccessful service returns with a return_code value of 0. Negative return_code values indicate that theservice failed. Positive return_code values indicate that the service succeeded with additional informa-tion. The smaller value is selected in case a service has multiple return_code values, but all messagesare appended in the return_code message.
The following table contains a list of common codes:

Table 6.51: Return codes of the LoadCarrierDB module’s services
Code Description0 Success-1 An invalid argument was provided-10 New element could not be added as the maximum storage capacity of load carriers hasbeen exceeded10 The maximum storage capacity of load carriers has been reached11 An existent persistent model was overwritten by the call to set_load_carrier

6.5.2 RoiDB

6.5.2.1 Introduction

The RoiDBmodule (region of interest databasemodule) allows the global definition of 2D and 3D regionsof interest, which can then be used in many detection modules. The ROIs are available for all modulessupporting 2D or 3D ROIs on the rc_visard.
The RoiDB module is a base module which is available on every rc_visard.
3D ROIs can be used in ItemPick and BoxPick (Section 6.3.3). 2D ROIs can be used in SilhouetteM-
atch (Section 6.3.4), and LoadCarrier (Section 6.3.1).

Basler AGManual: rc_visard 215 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

Table 6.52: Specifications of the RoiDB module
Supported ROI types 2D, 3DSupported ROI geometries 2D ROI: rectangle, 3D ROI: box, sphereMax. number of ROIs 2D: 100, 3D: 100ROIs available in 2D: SilhouetteMatch (Section 6.3.4), LoadCarrier (Section 6.3.1), 3D:

ItemPick and BoxPick (Section 6.3.3)Supported reference frames camera, external

6.5.2.2 Region of interest

A region of interest (ROI) defines a volume in space (3D region of interest, region_of_interest), or arectangular region in the left camera image (2D region of interest, region_of_interest_2d) which is ofinterest for a specific user-application.
A ROI can narrow the volumewhere a load carrier is searched for, or select a volumewhich only containsitems to be detected and/or grasped. Processing times can significantly decrease when using a ROI.
3D regions of interest of the following types (type) are supported:

• BOX, with dimensions box.x, box.y, box.z.
• SPHERE, with radius sphere.radius.

The user can specify the 3D region of interest pose in the camera or the external coordinate system.
External can only be chosen if a Hand-eye calibration (Section 6.4.1) is available. When the sensor isrobot mounted, and the region of interest is defined in the external frame, the current robot pose mustbe given to every detect service call that uses this region of interest.
A 2D ROI is defined as a rectangular part of the left camera image, and can be set via the REST-API inter-
face (Section 7.3) or the rc_visard Web GUI (Section 7.1) on the page Regions of Interest under Database.The Web GUI offers an easy-to-use selection tool. Each ROI must have a unique name to address aspecific 2D ROI.
In the REST-API, a 2D ROI is defined by the following values:

• id: Unique name of the region of interest
• offset_x, offset_y: offset in pixels along the x-axis and y-axis from the top-left corner of theimage, respectively
• width, height: width and height in pixels

The rc_visard can persistently store up to 100 different 3D regions of interest and the same number of2D regions of interest. The configuration of regions of interest is normally performed offline, during theset up of the desired application. This can be done via the REST-API interface (Section 7.3) of RoiDBmodule, or in the rc_visard Web GUI (Section 7.1) on the page Regions of Interest under Database.
Note: The configured regions of interest are persistent even over firmware updates and rollbacks.

6.5.2.3 Interaction with other modules

Internally, the RoiDB module depends on, and interacts with other on-board modules as listed below.
Hand-eye calibration

In case the camera has been calibrated to a robot, the pose of a 3D ROI can be provided in the robotcoordinate frame by setting the corresponding pose_frame argument.
Two different pose_frame values can be chosen:

Basler AGManual: rc_visard 216 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

1. Camera frame (camera). The ROI pose is provided in the camera frame, and no prior knowledgeabout the pose of the camera in the environment is required. This means that the configured loadcarriers move with the camera. It is the user’s responsibility to update the configured poses if thecamera frame moves (e.g. with a robot-mounted camera).
2. External frame (external). The ROI pose is provided in the external frame, configured by the userduring the hand-eye calibration process. The module relies on the on-board Hand-eye calibration

module (Section 6.4.1) to retrieve the sensor mounting (static or robot mounted) and the hand-eyetransformation.
Note: If no hand-eye calibration is available, all pose_frame values should be set to camera.

All pose_frame values that are not camera or external are rejected.
6.5.2.4 Services

The RoiDB module is called rc_roi_db in the REST-API and is represented in the Web GUI (Section 7.1)under Database → Regions of Interest. The user can explore and call the RoiDB module’s services, e.g.for development and testing, using the REST-API interface (Section 7.3) or the Web GUI.
The RoiDB module offers the following services.
set_region_of_interest

Persistently stores a 3D region of interest on the rc_visard. All configured 3D regions ofinterest are persistent over firmware updates and rollbacks.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_roi_db/services/set_region_of_interest

Request

Details for the definition of the region_of_interest type are given in Region of inter-
est (Section 6.5.2.2).
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"region_of_interest": {

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Basler AGManual: rc_visard 217 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

(continued from previous page)
}

},
"pose_frame": "string",
"sphere": {

"radius": "float64"
},
"type": "string"

}
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "set_region_of_interest",
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

set_region_of_interest_2d

Persistently stores a 2D region of interest on the rc_visard. All configured 2D regions ofinterest are persistent over firmware updates and rollbacks.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_roi_db/services/set_region_of_interest_2d

Request

Details for the definition of the region_of_interest_2d type are given in Region of inter-
est (Section 6.5.2.2).
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"region_of_interest_2d": {

"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "set_region_of_interest_2d",

(continues on next page)

Basler AGManual: rc_visard 218 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

(continued from previous page)
"response": {

"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest

Returns the configured 3D regions of interest with the requested region_of_interest_ids.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_roi_db/services/get_regions_of_interest

Request

If no region_of_interest_ids are provided, all configured 3D regions of interest are re-turned.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"region_of_interest_ids": [

"string"
]

}
}

Response

The definition for the response with corresponding datatypes is:
{

"name": "get_regions_of_interest",
"response": {

"regions_of_interest": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},

(continues on next page)

Basler AGManual: rc_visard 219 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

(continued from previous page)
"pose_frame": "string",
"sphere": {
"radius": "float64"

},
"type": "string"

}
],
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_regions_of_interest_2d

Returns the configured 2D regions of interest with the requested
region_of_interest_2d_ids.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_roi_db/services/get_regions_of_interest_2d

Request

If no region_of_interest_2d_ids are provided, all configured 2D regions of interest are re-turned.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"region_of_interest_2d_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "get_regions_of_interest_2d",
"response": {
"regions_of_interest": [
{

"height": "uint32",
"id": "string",
"offset_x": "uint32",
"offset_y": "uint32",
"width": "uint32"

}
],
"return_code": {
"message": "string",
"value": "int16"

}

(continues on next page)

Basler AGManual: rc_visard 220 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

(continued from previous page)
}

}

delete_regions_of_interest

Deletes the configured 3D regions of interest with the requested region_of_interest_ids.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_roi_db/services/delete_regions_of_interest

Request

All regions of interest to be deleted must be explicitly stated in region_of_interest_ids.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"region_of_interest_ids": [

"string"
]

}
}

Response

The definition for the response with corresponding datatypes is:
{

"name": "delete_regions_of_interest",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

delete_regions_of_interest_2d

Deletes the configured 2D regions of interest with the requested
region_of_interest_2d_ids.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_roi_db/services/delete_regions_of_interest_2d

Request

All 2D regions of interest to be deleted must be explicitly stated in
region_of_interest_2d_ids.
The definition for the request arguments with corresponding datatypes is:

Basler AGManual: rc_visard 221 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

{
"args": {

"region_of_interest_2d_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "delete_regions_of_interest_2d",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5.2.5 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. Asuccessful service returns with a return_code value of 0. Negative return_code values indicate that theservice failed. Positive return_code values indicate that the service succeeded with additional informa-tion. The smaller value is selected in case a service has multiple return_code values, but all messagesare appended in the return_code message.
The following table contains a list of common codes:

Table 6.53: Return codes of the RoiDB module’s services
Code Description0 Success-1 An invalid argument was provided-10 New element could not be added as the maximum storage capacity of regions of interesthas been exceeded10 The maximum storage capacity of regions of interest has been reached11 An existent persistent model was overwritten by the call to set_region_of_interest or

set_region_of_interest_2d

6.5.3 GripperDB

6.5.3.1 Introduction

The GripperDB module (gripper database module) is an optional on-board module of the rc_visard andis licensed with any of the modules ItemPick and BoxPick (Section 6.3.3) or SilhouetteMatch (Section6.3.4). Otherwise it requires a separate CollisionCheck license (Section 8.7) to be purchased.
The module provides services to set, retrieve and delete grippers which can then be used for check-ing collisions with a load carrier or other detected objects (only in combination with SilhouetteM-
atch (Section 6.3.4)). The specified grippers are available for all modules supporting collision checkingon the rc_visard.

Basler AGManual: rc_visard 222 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

Table 6.54: Specifications of the GripperDB module
Max. number of grippers 50Supported gripper element geometries Box, Cylinder, CAD ElementMax. number of elements per gripper 15Collision checking available in ItemPick and BoxPick (Section 6.3.3),

SilhouetteMatch (Section 6.3.4)

6.5.3.2 Setting a gripper

The gripper is a collision geometry used to determine whether the grasp is in collision with the loadcarrier. The gripper consists of up to 15 elements connected to each other.
At this point, the gripper can be built of elements of the following types:

• BOX, with dimensions box.x, box.y, box.z.
• CYLINDER, with radius cylinder.radius and height cylinder.height.
• CAD, with the id cad.id of the chosen CAD element.

Additionally, for each gripper the flange radius, and information about the Tool Center Point (TCP) haveto be defined.
The configuration of the gripper is normally performed offline during the setup of the desired application.This can be done via the REST-API interface (Section 7.3) or the rc_visard Web GUI (Section 7.1).
Robot flange radius

Collisions are checked only with the gripper, the robot body is not considered. As a safety feature, toprevent collisions between the load carrier and the robot, all grasps having any part of the robot’s flangeinside the load carrier can be designated as colliding (see Fig. 6.45). This check is based on the definedgripper geometry and the flange radius value. It is optional to use this functionality, and it can be turnedon and off with the CollisionCheckmodule’s run-time parameter check_flange as described inParameter
overview (Section 6.4.2.3).

A B

Fig. 6.45: Case A would be marked as collision only if check_flange is true, because the robot’s flange(red) is inside the load carrier. Case B is collision free independent of check_flange.

Uploading gripper CAD elements

A gripper can consist of boxes, cylinders and CAD elements. While boxes and cylinders can be param-eterized when the gripper is created, the CAD elements must be uploaded beforehand to be availableduring gripper creation. A CAD element can be uploaded via the REST-API interface (Section 7.3) asdescribed in Section CAD element API (Section 6.5.3.5) or via the rc_visard Web GUI (Section 7.1). Sup-ported file formats are STEP (*.stp, *.step), STL (*.stl), OBJ (*.obj) and PLY (*.ply). Themaximum file sizeto be uploaded is limited to 10 MB. The files are internally converted to PLY and, if necessary, simplified.The CAD elements can be referenced during gripper creation by their ID.

Basler AGManual: rc_visard 223 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

Creating a gripper via the REST-API or the Web GUI

When creating a gripper via the REST-API interface (Section 7.3) or the Web GUI (Section 7.1), each ele-ment of the gripper has a parent element, which defines how they are connected. The gripper is alwaysbuilt in the direction from the robot flange to the TCP, and at least one element must have ‘flange’ as par-ent. The elements’ IDs must be unique and must not be ‘tcp’ or ‘flange’. The pose of the child elementhas to be given in the coordinate frame of the parent element. The coordinate frame of an element isalways in its geometric center. Accordingly, for a child element to be exactly below the parent element,the position of the child element must be computed from the heights of both parent and child element(see Fig. 6.46).

Pcyl

Pbox

hbox

hcyl

Pdiff = (0, 0, (hcyl+hbox)/2)

Pdiff

Fig. 6.46: Reference frames for gripper creation via the REST-API and the Web GUI
In case a CAD element is used, the element’s origin is defined in the CAD data and is not necessarilylocated in the center of the element’s bounding box.
It is recommended to create a gripper via the Web GUI, because it provides a 3D visualization of thegripper geometry and also allows to automatically attach the child element to the bottom of its parentelement, when the corresponding option for this element is activated. In this case, the elements also stayattached when any of their sizes change. Automatic attachment of CAD elements uses the element’sbounding box as reference. Automatic attachment is only possible when the child element is not rotatedaround the x or y axis with respect to its parent.
The reference frame for the first element for the gripper creation is always the center of the robot’s flangewith the z axis pointing outwards. It is possible to create a gripper with a tree structure, correspondingto multiple elements having the same parent element, as long as they are all connected.
Calculated TCP position

After gripper creation via the set_gripper service call, the TCP position in the flange coordinate systemis calculated and returned as tcp_pose_flange. It is important to check if this value is the same as therobot’s true TCP position. When creating a gripper in the Web GUI the current TCP position is alwaysdisplayed in the 3D gripper visualization.
Creating rotationally asymmetric grippers

For grippers which are not rotationally symmetric around the z axis, it is crucial to ensure that the gripperis properly mounted, so that the representation stored in the GripperDB module corresponds to reality.

Basler AGManual: rc_visard 224 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

6.5.3.3 Services

The GripperDB module is called rc_gripper_db in the REST-API and is represented in the Web
GUI (Section 7.1) under Database → Grippers. The user can explore and call the GripperDB module’sservices, e.g. for development and testing, using the REST-API interface (Section 7.3) or the Web GUI.
The GripperDB module offers the following services.
set_gripper

Persistently stores a gripper on the rc_visard. All configured grippers are persistent overfirmware updates and rollbacks.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_gripper_db/services/set_gripper

Request

Required arguments:
elements: list of geometric elements for the gripper. Each element must be of
type ‘CYLINDER’ or ‘BOX’ with the corresponding dimensions in the cylinder or
box field, or of type ‘CAD’ with the corresponding id in the cad field. The pose ofeach element must be given in the coordinate frame of the parent element (see
Setting a gripper (Section 6.5.3.2) for an explanation of the coordinate frames).The element’s id must be unique and must not be ‘tcp’ or ‘flange’. The parent_idis the ID of the parent element. It can either be ‘flange’ or it must correspond toanother element in list.
flange_radius: radius of the flange used in case the check_flange run-time pa-rameter is active.
id: unique name of the gripper
tcp_parent_id: ID of the element on which the TCP is defined
tcp_pose_parent: The pose of the TCP with respect to the coordinate frame of theelement specified in tcp_parent_id.

The definition for the request arguments with corresponding datatypes is:
{

"args": {
"elements": [
{

"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {

(continues on next page)

Basler AGManual: rc_visard 225 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

(continued from previous page)
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
}

}
}

Response

gripper: returns the gripper as defined in the request with an additional field
tcp_pose_flange. This gives the coordinates of the TCP in the flange coordinate frame forcomparison with the true settings of the robot’s TCP.
return_code: holds possible warnings or error codes and messages.
The definition for the response with corresponding datatypes is:
{

"name": "set_gripper",
"response": {
"gripper": {
"elements": [

{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},

(continues on next page)

Basler AGManual: rc_visard 226 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

(continued from previous page)
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",
"tcp_pose_flange": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {

"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

},
"return_code": {
"message": "string",
"value": "int16"

}
}

}

get_grippers

Returns the configured grippers with the requested gripper_ids.

Basler AGManual: rc_visard 227 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_gripper_db/services/get_grippers

Request

If no gripper_ids are provided, all configured grippers are returned.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"gripper_ids": [
"string"

]
}

}

Response

The definition for the response with corresponding datatypes is:
{

"name": "get_grippers",
"response": {
"grippers": [
{

"elements": [
{
"box": {
"x": "float64",
"y": "float64",
"z": "float64"

},
"cad": {
"id": "string"

},
"cylinder": {
"height": "float64",
"radius": "float64"

},
"id": "string",
"parent_id": "string",
"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"flange_radius": "float64",
"id": "string",
"tcp_parent_id": "string",

(continues on next page)

Basler AGManual: rc_visard 228 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

(continued from previous page)
"tcp_pose_flange": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"tcp_pose_parent": {
"orientation": {
"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {
"x": "float64",
"y": "float64",
"z": "float64"

}
},
"type": "string"

}
],
"return_code": {

"message": "string",
"value": "int16"

}
}

}

delete_grippers

Deletes the configured grippers with the requested gripper_ids.
Details

This service can be called as follows.
PUT http://<host>/api/v2/nodes/rc_gripper_db/services/delete_grippers

Request

All grippers to be deleted must be explicitly stated in gripper_ids.
The definition for the request arguments with corresponding datatypes is:
{

"args": {
"gripper_ids": [
"string"

]
}

}

Response

Basler AGManual: rc_visard 229 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

The definition for the response with corresponding datatypes is:
{

"name": "delete_grippers",
"response": {
"return_code": {
"message": "string",
"value": "int16"

}
}

}

6.5.3.4 Return codes

Each service response contains a return_code, which consists of a value plus an optional message. Asuccessful service returns with a return_code value of 0. Negative return_code values indicate that theservice failed. Positive return_code values indicate that the service succeeded with additional informa-tion. The smaller value is selected in case a service has multiple return_code values, but all messagesare appended in the return_code message.
The following table contains a list of common codes:

Table 6.55: Return codes of the GripperDB services
Code Description0 Success-1 An invalid argument was provided-7 Data could not be read or written to persistent storage-9 No valid license for the module-10 New gripper could not be added as the maximum storage capacity of grippers has beenexceeded10 The maximum storage capacity of grippers has been reached11 Existing gripper was overwritten

6.5.3.5 CAD element API

For gripper CAD element upload, download, listing and removal, special REST-API endpoints are pro-vided. CAD elements can also be uploaded, downloaded and removed via the Web GUI. Up to 50 CADelements can be stored persistently on the rc_visard.
The maximum file size to be uploaded is limited to 10 MB.
GET /cad/gripper_elementsGet list of all CAD gripper elements.

Template request

GET /api/v2/cad/gripper_elements HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"id": "string"
}

]

Basler AGManual: rc_visard 230 Rev: 24.01.1Status: Jan 29, 2024

6.5. Database modules

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of GripperElement)

• 404 Not Found – element not found
Referenced Data Models

• GripperElement (Section 7.3.4)
GET /cad/gripper_elements/{id}Get a CAD gripper element. If the requested content-type is application/octet-stream, the gripperelement is returned as file.

Template request

GET /api/v2/cad/gripper_elements/<id> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

• id (string) – id of the element (required)
Response Headers

• Content-Type – application/json application/ubjson application/octet-stream
Status Codes

• 200 OK – successful operation (returns GripperElement)

• 404 Not Found – element not found
Referenced Data Models

• GripperElement (Section 7.3.4)
PUT /cad/gripper_elements/{id}Create or update a CAD gripper element.

Template request

PUT /api/v2/cad/gripper_elements/<id> HTTP/1.1
Accept: multipart/form-data application/json

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"id": "string"

}

Parameters

Basler AGManual: rc_visard 231 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

6.5. Database modules

• id (string) – id of the element (required)
Form Parameters

• file – CAD file (required)

Request Headers

• Accept – multipart/form-data application/json
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns GripperElement)

• 400 Bad Request – CAD is not valid or max number of elements reached
• 404 Not Found – element not found
• 413 Request Entity Too Large – File too large

Referenced Data Models

• GripperElement (Section 7.3.4)
DELETE /cad/gripper_elements/{id}Remove a CAD gripper element.

Template request

DELETE /api/v2/cad/gripper_elements/<id> HTTP/1.1
Accept: application/json application/ubjson

Parameters

• id (string) – id of the element (required)
Request Headers

• Accept – application/json application/ubjson
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation
• 404 Not Found – element not found

Basler AGManual: rc_visard 232 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7 Interfaces

The following interfaces are provided for configuring and obtaining data from the rc_visard:
• Web GUI (Section 7.1)

Easy-to-use graphical interface to configure the rc_visard, do calibrations, view live im-ages, do service calls, visualize results, etc.
• GigE Vision 2.0/GenICam (Section 7.2)

Images and camera related configuration.
• REST API (Section 7.3)

API to configure the rc_visard, query status information, do service calls, etc.
• rc_dynamics streams (Section 7.4)

Real-time streams containing state estimates with poses, velocities, etc. are providedover the rc_dynamics interface. It sends protobuf-encoded messages via UDP.
• Ethernet KRL Interface (EKI) (Section 7.5)

API to configure the rc_visard and do service calls from KUKA KSS robots.
• gRPC image stream (Section 7.6)

Stream synchronized image sets via gRPC.
• Time synchronization (Section 7.8)

Time synchronization between the rc_visard and the application host.

7.1 Web GUI

The rc_visard’s Web GUI can be used to test, calibrate, and configure the device.

7.1.1 Accessing the Web GUI

The Web GUI can be accessed from any web browser, such as Firefox, Google Chrome, or MicrosoftEdge, via the rc_visard’s IP address. The easiest way to access the Web GUI is to simply double click onthe desired device using the rcdiscover-gui tool as explained in Discovery of rc_visard devices (Section4.3).
Alternatively, some network environments automatically configure the unique host name of the rc_visardin their Domain Name Server (DNS). In this case, the Web GUI can also be accessed directly using the
URL http://<host-name> by replacing <host-name> with the device’s host name.
For Linux and Mac operating systems, this even works without DNS via the multicast Domain NameSystem (mDNS), which is automatically used if .local is appended to the host name. Thus, the URLsimply becomes http://<host-name>.local.

Basler AGManual: rc_visard 233 Rev: 24.01.1Status: Jan 29, 2024

7.1. Web GUI

7.1.2 Exploring the Web GUI

TheWeb GUI’s dashboard page gives themost important information about the device and the softwaremodules.

Fig. 7.1: Dashboard page of the rc_visard’s Web GUI
The page’s side menu permits access to the individual pages of the rc_visard’s Web GUI:
Camera shows a live stream of the rectified camera images. The frame rate can be reduced to savebandwidth when streaming to a GigE Vision® client. Furthermore, exposure can be set manuallyor automatically. See Parameters (Section 6.1.1.3) for more information.
Depth Image shows a live stream of the left rectified, disparity, and confidence images. The page con-tains various settings for depth-image computation and filtering. See Parameters (Section 6.1.2.5)for more information.
Dynamics shows the location andmovement of image features that are used to compute the rc_visard’segomotion. Settings include the number of corners and features that should be used. See Param-

eters (Section 6.2.2.1) for more information.
Modules gives access to the detection modules of the rc_visard (see Detection modules, Section 6.3).
Configuration gives access to the configuration modules of the rc_visard (see Configuration modules,Section 6.4).
Database gives access to the database modules of the rc_visard (see Database modules, Section 6.5).
System gives access to general settings, device information and to the log files, and permits thefirmware or the license file to be updated.
Note: Further information on all parameters in the Web GUI can be obtained by pressing the Infobutton next to each parameter.

7.1.3 Web GUI access control

The Web GUI has a simple mechanism to lock the UI against casual and accidental changes.
When enabling Web GUI access control via the System page, you will be asked to set a password. Nowthe Web GUI is in a locked mode indicated by the lock symbol in the top bar. All pages, camera streams,parameters and detections can be inspected as usual, but changes are not possible.

Basler AGManual: rc_visard 234 Rev: 24.01.1Status: Jan 29, 2024

7.1. Web GUI

To temporarily unlock the Web GUI and make changes, click the lock symbol and enter the password.While enabling or disabling Web GUI access control affects anyone accessing this rc_visard, the un-locked state is only valid for the browser where it was unlocked and indicated by the open lock symbol.It is automatically locked again after 10 minutes of inactivity.
Web GUI access control can also be disabled again on the System page after providing the current pass-word.
Warning: This is not a security feature! It only locks the Web GUI and not the REST-API. It is meantto prevent accidental and casual changes e.g. via a connected screen.

Note: In case the password is lost, this can be disabled via the REST-API delete ui_lock (Section7.3.3.3).

7.1.4 Downloading camera images

The Web GUI provides an easy way to download a snapshot of the current scene as a .tar.gz file byclicking on the camera icon below the image live streams on the Camera page. This snapshot contains:
• the rectified camera images in full resolution as .png files,
• a camera parameter file containing the camera matrix, image dimensions, exposure time, gainvalue and the stereo baseline,
• the current IMU readings as imu.csv file,
• a pipeline_status.json file containing information about all 3D-camera, detection and configurationnodes running on the rc_visard,
• a backup.json file containing the settings of the rc_visard including grippers, load carriers andregions of interest,
• a system_info.json file containing system information about the rc_visard.

The filenames contain the timestamps.

7.1.5 Downloading depth images and point clouds

The Web GUI provides an easy way to download the depth data of the current scene as a .tar.gz fileby clicking on the camera icon below the image live streams on the Depth Image page. This snapshotcontains:
• the rectified left and right camera images in full resolution as .png files,
• an image parameter file corresponding to the left image containing the camera matrix, image di-mensions, exposure time, gain value and the stereo baseline,
• the disparity, error and confidence images in the resolution corresponding to the currently chosenquality as .png files,
• a disparity parameter file corresponding to the disparity image containing the camera matrix, im-age dimensions, exposure time, gain value and the stereo baseline, and information about thedisparity values (i.e. invalid values, scale, offset),
• the current IMU readings as imu.csv file,
• a pipeline_status.json file containing information about all 3D-camera, detection and configurationnodes running on the rc_visard,
• a backup.json file containing the settings of the rc_visard including grippers, load carriers andregions of interest,

Basler AGManual: rc_visard 235 Rev: 24.01.1Status: Jan 29, 2024

7.2. GigE Vision 2.0/GenICam image interface

• a system_info.json file containing system information about the rc_visard.
The filenames contain the timestamps.
When clicking on the mesh icon below the image live streams on the Depth Image page, a snapshot isdownloaded which additionally includes a mesh of the point cloud in the current depth quality (resolu-tion) as .ply file.
Note: Downloading a depth snapshot will trigger an acquisition in the same way as clicking on the“Acquire” button on the Depth Image page of the Web GUI, and, thus, might affect running applica-tions.

7.2 GigE Vision 2.0/GenICam image interface

Gigabit Ethernet for Machine Vision (“GigE Vision®” for short) is an industrial camera interface standardbased on UDP/IP (see http://www.gigevision.com). The rc_visard is a GigE Vision® version 2.0 deviceand is hence compatible with all GigE Vision® 2.0 compliant frameworks and libraries.
GigE Vision® uses GenICam to describe the camera/device features. For more information about this
Generic Interface for Cameras see http://www.genicam.org/.
Via this interface the rc_visard provides features such as

• discovery,
• IP configuration,
• configuration of camera related parameters,
• image grabbing, and
• time synchronization via IEEE 1588-2008 PrecisionTimeProtocol (PTPv2).

Note: The rc_visard supports jumbo frames of up to 9000 bytes. Setting an MTU of 9000 on yourGigE Vision client side is recommended for best performance.

7.2.1 GigE Vision ports

GigE Vision is a UDP based protocol. On the rc_visard the UDP ports are fixed and known:
• UDP port 3956: GigE Vision Control Protocol (GVCP). Used for discovery, control and configuration.
• UDP port 50010: Stream channel source port for GigE Vision Stream Protocol (GVSP) used forimage streaming.

7.2.2 Important GenICam parameters

The following list gives an overview of the relevant GenICam features of the rc_visard that can be readand/or changed via the GenICam interface. In addition to the standard parameters, which are definedin the Standard Feature Naming Convention (SFNC, see http://www.emva.org/standards-technology/genicam/genicam-downloads/), rc_visard devices also offer custom parameters that account for spe-cial features of the Camera (Section 6.1.1) and the Stereo matching (Section 6.1.2) module.

7.2.3 Important standard GenICam features

7.2.3.1 Category: ImageFormatControl

ComponentSelector

Basler AGManual: rc_visard 236 Rev: 24.01.1Status: Jan 29, 2024

http://www.gigevision.com
http://www.genicam.org/
http://www.emva.org/standards-technology/genicam/genicam-downloads/
http://www.emva.org/standards-technology/genicam/genicam-downloads/

7.2. GigE Vision 2.0/GenICam image interface

• type: Enumeration, one of Intensity, IntensityCombined, Disparity, Confidence, or Error
• default: -
• description: Allows the user to select one of the five image streams for configuration (see
Provided image streams, Section 7.2.6).

ComponentIDValue (read-only)

• type: Integer
• description: The ID of the image stream selected by the ComponentSelector.

ComponentEnable

• type: Boolean
• default: -
• description: If set to true, it enables the image stream selected by ComponentSelector; oth-erwise, it disables the stream. Using ComponentSelector and ComponentEnable, individualimage streams can be switched on and off.

Width (read-only)

• type: Integer
• description: Image width in pixel of image stream that is currently selected by
ComponentSelector.

Height (read-only)

• type: Integer
• description: Image height in pixel of image stream that is currently selected by
ComponentSelector.

WidthMax (read-only)

• type: Integer
• description: Maximum width of an image.

HeightMax (read-only)

• type: Integer
• description: Maximum height of an image in the streams. This is always 1920 pixels dueto the stacked left and right images in the IntensityCombined stream (see Provided image
streams, Section 7.2.6).

PixelFormat

• type: Enumeration, one of Mono8, YCbCr411_8 (color cameras only), Coord3D_C16, Confidence8and Error8

• description: Pixel format of the selected component. The enumeration only permits to choosethe format among the possibly formats for the selected component. For a color camera,
Mono8 or YCbCr411_8 can be chosen for the Intensity and IntensityCombined component.

7.2.3.2 Category: AcquisitionControl

AcquisitionFrameRate

• type: Float, ranges from 1 Hz to 25 Hz
• default: 25 Hz
• description: Frame rate of the camera (FPS, Section 6.1.1.3).

ExposureAuto

Basler AGManual: rc_visard 237 Rev: 24.01.1Status: Jan 29, 2024

7.2. GigE Vision 2.0/GenICam image interface

• type: Enumeration, one of Continuous, Out1High, AdaptiveOut1, HDR or Off
• default: Continuous
• description: Combines exp_control (exposure control, Section 6.1.1.3) and exp_auto_mode(auto exposure mode, Section 6.1.1.3). Off maps to Manual exposure control. Continuous,
Out1High or AdaptiveOut1 enable Auto exposure control with the respective auto exposure
mode where Continuous maps to the Normal exp_auto_mode. HDR enables high-dynamic-range exposure control.

ExposureTime

• type: Float, ranges from 66 µs to 18000 µs
• default: 5000 µs
• description: The cameras’ exposure time in microseconds for the manual exposure mode(Exposure, Section 6.1.1.3).

7.2.3.3 Category: AnalogControl

GainSelector (read-only)

• type: Enumeration, is always All

• default: All
• description: The rc_visard currently supports only one overall gain setting.

Gain

• type: Float, ranges from 0 dB to 18 dB
• default: 0 dB
• description: The cameras’ gain value in decibel that is used in manual exposure mode (Gain,Section 6.1.1.3).

BalanceWhiteAuto (color cameras only)

• type: Enumeration, one of Continuous or Off
• default: Continuous
• description: Can be set to Off for manual white balancing mode or to Continuous for autowhite balancing. This feature is only available on color cameras (wb_auto, Section 6.1.1.3).

BalanceRatioSelector (color cameras only)

• type: Enumeration, one of Red or Blue
• default: Red
• description: Selects ratio to be modified by BalanceRatio. Red means red to green ratio and
Blue means blue to green ratio. This feature is only available on color cameras.

BalanceRatio (color cameras only)

• type: Float, ranges from 0.125 to 8
• default: 1.2 if Red and 2.4 if Blue is selected in BalanceRatioSelector

• description: Weighting of red or blue to green color channel. This feature is only available oncolor cameras (wb_ratio, Section 6.1.1.3).

Basler AGManual: rc_visard 238 Rev: 24.01.1Status: Jan 29, 2024

7.2. GigE Vision 2.0/GenICam image interface

7.2.3.4 Category: DigitalIOControl

LineSelector

• type: Enumeration, one of Out1, Out2, In1 or In2
• default: Out1
• description: Selects the input or output line for getting the current status or setting the source.

LineStatus (read-only)

• type: Boolean
• description: Current status of the line selected by LineSelector.

LineStatusAll (read-only)

• type: Integer
• description: Current status of GPIO inputs and outputs represented in the lowest four bits.

Table 7.1: Meaning of bits of LineStatusAll field.
Bit 4 3 2 1GPIO In 2 In 1 Out 2 Out 1

LineSource

• type: Enumeration, one of ExposureActive, ExposureAlternateActive, Low or High
• default: Low
• description: Mode for output line selected by LineSelector as described in the IO-Control module (out1_mode and out2_mode, Section 6.4.4.1). See also parameter
AcquisitionAlternateFilter for filtering images in ExposureAlternateActive mode.

7.2.3.5 Category: TransportLayerControl / PtpControl

PtpEnable

• type: Boolean
• default: false
• description: Switches PTP synchronization on and off.

7.2.3.6 Category: Scan3dControl

Scan3dDistanceUnit (read-only)

• type: Enumeration, is always Pixel

• description: Unit for the disparity measurements, which is always Pixel.
Scan3dOutputMode (read-only)

• type: Enumeration, is always DisparityC

• description: Mode for the depth measurements, which is always DisparityC.
Scan3dFocalLength (read-only)

• type: Float
• description: Focal length in pixel of image stream selected by ComponentSelector. In case ofthe component Disparity, Confidence and Error, the value also depends on the resolutionthat is implicitly selected by DepthQuality.

Basler AGManual: rc_visard 239 Rev: 24.01.1Status: Jan 29, 2024

7.2. GigE Vision 2.0/GenICam image interface

Scan3dBaseline (read-only)

• type: Float
• description: Baseline of the stereo camera in meters.

Scan3dPrinciplePointU (read-only)

• type: Float
• description: Horizontal location of the principle point in pixel of image stream selected by
ComponentSelector. In case of the component Disparity, Confidence and Error, the valuealso depends on the resolution that is implicitly selected by DepthQuality.

Scan3dPrinciplePointV (read-only)

• type: Float
• description: Vertical location of the principle point in pixel of image stream selected by
ComponentSelector. In case of the component Disparity, Confidence and Error, the valuealso depends on the resolution that is implicitly selected by DepthQuality.

Scan3dCoordinateScale (read-only)

• type: Float
• description: The scale factor that has to bemultiplied with the disparity values in the disparityimage stream to get the actual disparity measurements. This value is always 0.0625.

Scan3dCoordinateOffset (read-only)

• type: Float
• description: The offset that has to be added to the disparity values in the disparity imagestream to get the actual disparity measurements. For the rc_visard, this value is always 0 andcan therefore be disregarded.

Scan3dInvalidDataFlag (read-only)

• type: Boolean
• description: Is always true, which means that invalid data in the disparity image is markedby a specific value defined by the Scan3dInvalidDataValue parameter.

Scan3dInvalidDataValue (read-only)

• type: Float
• description: Is the value which stands for invalid disparity. This value is always 0, whichmeans that disparity values of 0 correspond to invalid measurements. To distinguish be-tween invalid disparity measurements and disparity measurements of 0 for objects whichare infinitely far away, the rc_visard sets the disparity value for the latter to the smallest pos-sible disparity value of 0.0625. This still corresponds to an object distance of several hundredmeters.

7.2.3.7 Category: ChunkDataControl

ChunkModeActive

• type: Boolean
• default: False
• description: Enables chunk data that is delivered with every image.

Basler AGManual: rc_visard 240 Rev: 24.01.1Status: Jan 29, 2024

7.2. GigE Vision 2.0/GenICam image interface

7.2.4 Custom GenICam features of the rc_visard

7.2.4.1 Category: DeviceControl

RcSystemReady (read-only)

• type: Boolean
• description: Returns whether the device’s boot process has completed and all modules arerunning.

RcParamLockDisable

• type: Boolean
• default: False
• description: If set to true, the camera and depth image parameters are not locked when aGigE Vision client is connected to the device. Please note that depending on the connectedGigE Vision client, parameter changes by other applications (e.g. the Web GUI) might not benoticed by the GigE Vision client, which could lead to unwanted results.

7.2.4.2 Category: AcquisitionControl

AcquisitionAlternateFilter

• type: Enumeration, one of Off, OnlyHigh or OnlyLow
• default: Off
• description: If this parameter is set to OnlyHigh (or OnlyLow) and the LineSource is set to
ExposureAlternateActive for any output, then only camera images are delivered that arecaptured while the output is high, i.e. a potentially connected projector is on (or low, i.e. apotentially connected projector is off). This parameter is a simple means for only gettingimageswithout projected pattern. Theminimal time difference between camera and disparityimages will be about 40 ms in this case (see IOControl, Section 6.4.4.1).

AcquisitionMultiPartMode

• type: Enumeration, one of SingleComponent or SynchronizedComponents
• default: SingleComponent
• description: Only effective in MultiPart mode. If this parameter is set to SingleComponentthe images are sent immediately as a single component per frame/buffer when they becomeavailable. This is the same behavior as when MultiPart is not supported by the client. If setto SynchronizedComponents all enabled components are time synchronized on the rc_visardand only sent (in one frame/buffer) when they are all available for that timestamp.

ExposureTimeAutoMax

• type: Float, ranges from 66 µs to 18000 µs
• default: 18000 µs
• description: Maximal exposure time in auto exposure mode (Max Exposure, Section 6.1.1.3).

ExposureRegionOffsetX

• type: Integer in the range of 0 to the maximum image width
• default: 0
• description: Horizontal offset of exposure region (Section 6.1.1.3) in pixel.

ExposureRegionOffsetY

• type: Integer in the range of 0 to the maximum image height

Basler AGManual: rc_visard 241 Rev: 24.01.1Status: Jan 29, 2024

7.2. GigE Vision 2.0/GenICam image interface

• default: 0
• description: Vertical offset of exposure region (Section 6.1.1.3) in pixel.

ExposureRegionWidth

• type: Integer in the range of 0 to the maximum image width
• default: 0
• description: Width of exposure region (Section 6.1.1.3) in pixel.

ExposureRegionHeight

• type: Integer in the range of 0 to the maximum image height
• default: 0
• description: Height of exposure region (Section 6.1.1.3) in pixel.

RcExposureAutoAverageMax

• type: Float in the range of 0 to 1
• default: 0.75
• description: Maximum brightness for the auto exposure function (Section 6.1.1.3) as valuebetween 0 (dark) and 1 (bright).

RcExposureAutoAverageMin

• type: Float in the range of 0 to 1
• default: 0.25
• description: Minimum brightness for the auto exposure function (Section 6.1.1.3) as valuebetween 0 (dark) and 1 (bright).

7.2.4.3 Category: Scan3dControl

FocalLengthFactor (read-only)

• type: Float
• description: The focal length scaled to an image width of 1 pixel. To get the focal length inpixels for a certain image, this value must be multiplied by the width of the received image.See also parameter Scan3dFocalLength.

Baseline (read-only)

• type: Float
• description: This parameter is deprecated. The parameter Scan3dBaseline should be usedinstead.

7.2.4.4 Category: DepthControl

DepthAcquisitionMode

• type: Enumeration, one of SingleFrame, SingleFrameOut1 or Continuous
• default: Continuous
• description: In single frame mode, stereo matching is performed upon each call of
DepthAcquisitionTrigger. The SingleFrameOut1 mode can be used to control an externalprojector. It sets the line source of Out1 to ExposureAlternateActive upon each trigger andresets it to Low as soon as the images for stereo matching are grabbed. In continuous mode,stereo matching is performed continuously.

DepthAcquisitionTrigger

Basler AGManual: rc_visard 242 Rev: 24.01.1Status: Jan 29, 2024

7.2. GigE Vision 2.0/GenICam image interface

• type: Command
• description: This command triggers stereo matching of the next available stereo image pair,if DepthAcquisitionMode is set to SingleFrame or SingleFrameOut1.

DepthQuality

• type: Enumeration, one of Low, Medium, High, or Full (only with StereoPlus license)

• default: High
• description: Quality of disparity images. Lower quality results in disparity images with lowerresolution (Quality, Section 6.1.2.5).

DepthDoubleShot

• type: Boolean
• default: False
• description: True for improving the stereo matching result of a scene recorded with a projec-tor by filling holes with depth information computed from images without projector pattern.(Double-Shot, Section 6.1.2.5).

DepthStaticScene

• type: Boolean
• default: False
• description: True for averaging 8 consecutive camera images for improving the stereomatch-ing result. (Static, Section 6.1.2.5).

DepthSmooth (read-only if StereoPlus license is not available)

• type: Boolean
• default: False
• description: True for advanced smoothing of disparity values. (Smoothing, Section 6.1.2.5).

DepthFill

• type: Integer, ranges from 0 pixel to 4 pixels
• default: 3 pixels
• description: Value in pixels for Fill-In (Section 6.1.2.5).

DepthSeg

• type: Integer, ranges from 0 pixel to 4000 pixels
• default: 200 pixels
• description: Value in pixels for Segmentation (Section 6.1.2.5).

DepthMinConf

• type: Float, ranges from 0.0 to 1.0
• default: 0.0
• description: Value for Minimum Confidence filtering (Section 6.1.2.5).

DepthMinDepth

• type: Float, ranges from 0.1 m to 100.0 m
• default: 0.1 m
• description: Value in meters for Minimum Distance filtering (Section 6.1.2.5).

DepthMaxDepth

• type: Float, ranges from 0.1m to 100.0 m
Basler AGManual: rc_visard 243 Rev: 24.01.1Status: Jan 29, 2024

7.2. GigE Vision 2.0/GenICam image interface

• default: 100.0 m
• description: Value in meters for Maximum Distance filtering (Section 6.1.2.5).

DepthMaxDepthErr

• type: Float, ranges from 0.01 m to 100.0 m
• default: 100.0 m
• description: Value in meters for Maximum Depth Error filtering (Section 6.1.2.5).

7.2.5 Chunk data

The rc_visard supports chunk parameters that are transmitted with every image. Chunk parameters allhave the prefix Chunk. Their meaning equals their non-chunk counterparts, except that they belong tothe corresponding image, e.g. Scan3dFocalLength depends on ComponentSelector and DepthQualityas both can change the image resolution. The parameter ChunkScan3dFocalLength that is delivered withan image fits to the resolution of the corresponding image.
Particularly useful chunk parameters are:

• ChunkComponentSelector selects for which component to extract the chunk data in MultiPartmode.
• ChunkComponentID and ChunkComponentIDValue provide the relation of the image to its component(e.g. camera image or disparity image) without guessing from the image format or size.
• ChunkLineStatusAll provides the status of all GPIOs at the time of image acquisition. See
LineStatusAll above for a description of bits.

• ChunkScan3d... parameters are useful for 3D reconstruction as described in Section Image stream
conversions (Section 7.2.7).

• ChunkPartIndex provides the index of the image part in this MultiPart block for the selected com-ponent (ChunkComponentSelector).
• ChunkRcOut1Reductiongives a ratio of howmuch the brightness of the imageswithGPIOOut1 LOWis lower than the brightness of the images with GPIO Out1 HIGH. For example, a value of 0.2meansthat the images with GPIO Out1 LOW have 20% less brightness than the images with GPIO Out1HIGH. This value is only available if exp_auto_mode of the stereo camera is set to AdaptiveOut1 or
Out1High (auto exposure mode, Section 6.1.1.3).

Chunk data is enabled by setting the GenICam parameter ChunkModeActive to True.

7.2.6 Provided image streams

The rc_visard provides the following five different image streams via the GenICam interface:

Basler AGManual: rc_visard 244 Rev: 24.01.1Status: Jan 29, 2024

7.2. GigE Vision 2.0/GenICam image interface

Component name PixelFormat Description
Intensity

Mono8 (monochromecameras)
YCbCr411_8 (colorcameras)

Left rectified cam-era image

IntensityCombined

Mono8 (monochromecameras)
YCbCr411_8 (colorcameras)

Left rectified cam-era image stackedon right rectifiedcamera image

Disparity Coord3D_C16 Disparity image indesired resolution,i.e., DepthQualityof Full, High,
Medium or Low

Confidence Confidence8 Confidence image
Error Error8 (custom:0x81080001) Disparity error im-age

Each image comes with a buffer timestamp and the PixelFormat given in the above table. This PixelFor-mat should be used to distinguish between the different image types. Images belonging to the sameacquisition timestamp can be found by comparing the GenICam buffer timestamps.

7.2.7 Image stream conversions

The disparity image contains 16 bit unsigned integer values. These values must be multiplied by thescale value given in the GenICam feature Scan3dCoordinateScale to get the disparity values 𝑑 in pix-els. To compute the 3D object coordinates from the disparity values, the focal length and the base-line as well as the principle point are required. These parameters are transmitted as GenICam fea-tures Scan3dFocalLength, Scan3dBaseline, Scan3dPrincipalPointU and Scan3dPrincipalPointV. The fo-cal length and principal point depend on the image resolution of the selected component. Knowingthese values, the pixel coordinates and the disparities can be transformed into 3D object coordinatesin the camera coordinate frame using the equations described in Computing depth images and point
clouds (Section 6.1.2.2).
Note: The rc_visard’s camera coordinate frame is defined as shown in sensor coordinate
frame (Section 3.7).

Assuming that 𝑑16𝑖𝑘 is the 16 bit disparity value at column 𝑖 and row 𝑘 of a disparity image, the floatdisparity in pixels 𝑑𝑖𝑘 is given by
𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · Scan3dCoordinateScale

The 3D reconstruction in meters can be written with the GenICam parameters as:
𝑃𝑥 = (𝑖+ 0.5− Scan3dPrincipalPointU)

Scan3dBaseline

𝑑𝑖𝑘
,

𝑃𝑦 = (𝑘 + 0.5− Scan3dPrincipalPointV)
Scan3dBaseline

𝑑𝑖𝑘
,

𝑃𝑧 = Scan3dFocalLength
Scan3dBaseline

𝑑𝑖𝑘
.

Basler AGManual: rc_visard 245 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

The confidence image contains 8 bit unsigned integer values. These values have to be divided by 255to get the confidence as value between 0 an 1.
The error image contains 8 bit unsigned integer values. The error 𝑒𝑖𝑘 must be multiplied by the scalevalue given in the GenICam feature Scan3dCoordinateScale to get the disparity-error values 𝑑𝑒𝑝𝑠 in pixels.According to the description in Confidence and error images (Section 6.1.2.3), the depth error 𝑧𝑒𝑝𝑠 inmeters can be computed with GenICam parameters as

𝑑𝑖𝑘 = 𝑑16𝑖𝑘 · Scan3dCoordinateScale,

𝑧𝑒𝑝𝑠 =
𝑒𝑖𝑘 · Scan3dCoordinateScale · Scan3dFocalLength · Scan3dBaseline

(𝑑𝑖𝑘)2
.

Note: It is preferable to enable chunk data with the parameter ChunkModeActive and to use thechunk parameters ChunkScan3dCoordinateScale, ChunkScan3dFocalLength, ChunkScan3dBaseline,
ChunkScan3dPrincipalPointU and ChunkScan3dPrincipalPointV that are delivered with every image,because their values already fit to the image resolution of the corresponding image.

For more information about disparity, error, and confidence images, please refer to Stereo match-
ing (Section 6.1.2).

7.3 REST-API interface

Aside from the GenICam interface (Section 7.2), the rc_visard offers a comprehensive RESTful web inter-face (REST-API) which any HTTP client or library can access. Whereasmost of the provided parameters,services, and functionalities can also be accessed via the user-friendly Web GUI (Section 7.1), the REST-API serves rather as a machine-to-machine interface to the rc_visard, e.g., to programmatically
• set and get run-time parameters of computation nodes, e.g., of cameras or image processingmod-ules;
• do service calls, e.g., to start and stop individual computational nodes, or to use offered servicessuch as the hand-eye calibration;
• read the current state of the system and individual computational nodes; or
• update the rc_visard’s firmware or license.

Note: In the rc_visard’s REST-API, a node is a computational component that bundles certain algorith-mic functionality and offers a holistic interface (parameters, services, current status). Examples forsuch nodes are the stereo matching node or the hand-eye calibration node.

7.3.1 General API structure

The general entry point to the rc_visard’s API is http://<host>/api/, where <host> is either the device’sIP address or its host name as known by the respective DHCP server, as explained in network configura-
tion (Section 4.4). Accessing this entry point with a web browser lets the user explore and test the fullAPI during run-time using the Swagger UI (Section 7.3.5).
For actual HTTP requests, the current API version is appended to the entry point of the API, i.e., http:/
/<host>/api/v2. All data sent to and received by the REST-API follows the JavaScript Object Notation(JSON). The API is designed to let the user create, retrieve, modify, and delete so-called resources aslisted in Available resources and requests (Section 7.3.3) using the HTTP requests below.

Basler AGManual: rc_visard 246 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

Request type DescriptionGET Access one or more resourcesand return the result as JSON.PUT Modify a resource and return themodified resource as JSON.DELETE Delete a resource.POST Upload file (e.g., license orfirmware image).
Depending on the type and the specific request itself, arguments to HTTP requests can be transmittedas part of the path (URI) to the resource, as query string, as form data, or in the body of the request. Thefollowing examples use the command line tool curl, which is available for various operating systems.See https://curl.haxx.se.

• Get a node’s current status; its name is encoded in the path (URI)
curl -X GET 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching'

• Get values of some of a node’s parameters using a query string
curl -X GET 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters?
→˓name=minconf&name=maxdepth'

• Configure a new datastream; the destination parameter is transmitted as form data
curl -X PUT --header 'Content-Type: application/x-www-form-urlencoded' -d 'destination=10.0.
→˓1.14%3A30000' 'http://<host>/api/v2/datastreams/pose'

• Set a node’s parameter as JSON-encoded text in the body of the request
curl -X PUT --header 'Content-Type: application/json' -d '[{"name": "mindepth", "value": 0.
→˓1}]' 'http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters'

As for the responses to such requests, some common return codes for the rc_visard’s API are:
Status Code Description
200 OK The request was successful; theresource is returned as JSON.
400 Bad Request A required attribute or argumentof the API request is missing orinvalid.
404 Not Found A resource could not be ac-cessed; e.g., an ID for a resourcecould not be found.
403 Forbidden Access is (temporarily) forbid-den; e.g., some parameters arelocked while a GigE Vision appli-cation is connected.
429 Too many requests Rate limited due to excessive re-quest frequency.

The following listing shows a sample response to a successful request that accesses information aboutthe rc_stereomatching node’s minconf parameter:
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 157

(continues on next page)

Basler AGManual: rc_visard 247 Rev: 24.01.1Status: Jan 29, 2024

https://curl.haxx.se

7.3. REST-API interface

(continued from previous page)
{

"name": "minconf",
"min": 0,
"default": 0,
"max": 1,
"value": 0,
"type": "float64",
"description": "Minimum confidence"

}

Note: The actual behavior, allowed requests, and specific return codes depend heavily on the specificresource, context, and action. Please refer to the rc_visard’s available resources (Section 7.3.3) andto each software module’s (Section 6) parameters and services.

7.3.2 Migration from API version 1

API version 1 has become deprecated with the 22.01 firmware release of the rc_visard. The followingchanges were introduced in API version 2.
• All 3D-camera, navigation, detection and configuration modules which were located under /nodesin API version 1 are now under /pipelines/0/nodes/, e.g. /pipelines/0/nodes/rc_camera.
• Configuring load carriers, grippers and regions of interest is now only possible in the globaldatabase modules, which are located under /nodes, e.g. /nodes/rc_load_carrier_db. The corre-sponding services in the detection modules have been removed or deprecated.
• Templates can now be accessed under /templates, e.g. /templates/rc_silhouettematch.

7.3.3 Available resources and requests

The available REST-API resources are structured into the following parts:
• /nodes Access the rc_visard’s global Database modules (Section 6.5) with their run-time status,parameters, and offered services, for storing data used in multiple modules, such as loadcarriers, grippers and regions of interest.
• /pipelines Access to the status and configuration of the camera pipelines. There is always onlyone camera pipeline with number 0.
• /pipelines/0/nodes Access the rc_visard’s 3D-camera, navigation, detection and configuration

software modules (Section 6) with their run-time status, parameters, and offered services.
• /templates Access the object templates on the rc_visard.
• /datastreams Access andmanage data streams of the rc_visard’s rc_dynamics interface (Section7.4).
• /system Access the system state, set network configuration,

and manage licenses as well as firmware updates.
• /logs Access the log files on the rc_visard.

7.3.3.1 Nodes, parameters, and services

Nodes represent the rc_visard’s software modules (Section 6), each bundling a certain algorithmic func-tionality. All available global REST-API database nodes can be listed with their service calls and param-eters using

Basler AGManual: rc_visard 248 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

curl -X GET http://<host>/api/v2/nodes

Information about a specific node (e.g., rc_load_carrier_db) can be retrieved using
curl -X GET http://<host>/api/v2/nodes/rc_load_carrier_db

All available 3D camera, navigation, detection and configuration REST-API nodes can be listed with theirservice calls and parameters using
curl -X GET http://<host>/api/v2/pipelines/0/nodes

Information about a specific node (e.g., rc_camera) can be retrieved using
curl -X GET http://<host>/api/v2/pipelines/0/nodes/rc_camera

Status: During run-time, each node offers information about its current status. This includes not onlythe current processing status of the module (e.g., running or stale), but most nodes also offerrun-time statistics or read-only parameters, so-called status values. As an example, the rc_cameravalues can be retrieved using
curl -X GET http://<host>/api/v2/pipelines/0/nodes/rc_camera/status

Note: The returned status values are specific to individual nodes and are documented in therespective software module (Section 6).
Note: The status values are only reported when the respective node is in the running state.

Parameters: Most nodes expose parameters via the rc_visard’s REST-API to allow their run-time behav-iors to be changed according to application context or requirements. The REST-API permits to readand write a parameter’s value, but also provides further information such as minimum, maximum,and default values.
As an example, the rc_stereomatching parameters can be retrieved using
curl -X GET http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters

Its quality parameter could be set to Full using
curl -X PUT http://<host>/api/v2/pipelines/0/nodes/rc_stereomatching/parameters?quality=Full

or equivalently
curl -X PUT --header 'Content-Type: application/json' -d '{ "value": "Full" }' http://<host>
→˓/api/v2/pipelines/0/nodes/rc_stereomatching/parameters/quality

Note: Run-time parameters are specific to individual nodes and are documented in the respec-tive software module (Section 6).
Note: Most of the parameters that nodes offer via the REST-API can be explored and tested viathe rc_visard’s user-friendly Web GUI (Section 7.1).
Note: Some parameters exposed via the rc_visard’s REST-API are also available from the GigE
Vision 2.0/GenICam image interface (Section 7.2). Please note that setting those parametersvia the REST-API or Web GUI is prohibited if a GenICam client is connected.

In addition, each node that offers run-time parameters also features a service to restore the defaultvalues for all of its parameters.

Basler AGManual: rc_visard 249 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

Services: Some nodes also offer services that can be called via REST-API, e.g., to restore parameters asdiscussed above, or to start and stop nodes. As an example, the services of the hand-eye calibration
module (Section 6.4.1.5) could be listed using
curl -X GET http://<host>/api/v2/pipelines/0/nodes/rc_hand_eye_calibration/services

A node’s service is called by issuing a PUT request for the respective resource and providing theservice-specific arguments (see the "args" field of the Service data model, Section 7.3.4). As anexample, the stereo matching module can be triggered to do an acquisition by:
curl -X PUT --header 'Content-Type: application/json' -d '{ "args": {} }' http://<host>/api/
→˓v2/pipelines/0/nodes/rc_stereomatching/services/acquisition_trigger

Note: The services and corresponding argument data models are specific to individual nodesand are documented in the respective software module (Section 6).
The following list includes all REST-API requests regarding the global database nodes’ status, parame-ters, and services calls:
GET /nodesGet list of all available global nodes.

Template request

GET /api/v2/nodes HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_roi_db",
"parameters": [],
"services": [
"set_region_of_interest",
"get_regions_of_interest",
"delete_regions_of_interest",
"set_region_of_interest_2d",
"get_regions_of_interest_2d",
"delete_regions_of_interest_2d"

],
"status": "running"

},
{

"name": "rc_load_carrier_db",
"parameters": [],
"services": [
"set_load_carrier",
"get_load_carriers",
"delete_load_carriers"

],
"status": "running"

},
{

"name": "rc_gripper_db",
"parameters": [],
"services": [
"set_gripper",
"get_grippers",
"delete_grippers"

(continues on next page)

Basler AGManual: rc_visard 250 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

(continued from previous page)
],
"status": "running"

}
]

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of NodeInfo)

Referenced Data Models

• NodeInfo (Section 7.3.4)
GET /nodes/{node}Get info on a single global node.

Template request

GET /api/v2/nodes/<node> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_roi_db",
"parameters": [],
"services": [

"set_region_of_interest",
"get_regions_of_interest",
"delete_regions_of_interest",
"set_region_of_interest_2d",
"get_regions_of_interest_2d",
"delete_regions_of_interest_2d"

],
"status": "running"

}

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns NodeInfo)

• 404 Not Found – node not found
Referenced Data Models

• NodeInfo (Section 7.3.4)
GET /nodes/{node}/servicesGet descriptions of all services a global node offers.

Template request

Basler AGManual: rc_visard 251 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

GET /api/v2/nodes/<node>/services HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "string",
"name": "string",
"response": {}

}
]

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of Service)

• 404 Not Found – node not found
Referenced Data Models

• Service (Section 7.3.4)
GET /nodes/{node}/services/{service}Get description of a global node’s specific service.

Template request

GET /api/v2/nodes/<node>/services/<service> HTTP/1.1

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Parameters

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns Service)

Basler AGManual: rc_visard 252 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

• 404 Not Found – node or service not found
Referenced Data Models

• Service (Section 7.3.4)
PUT /nodes/{node}/services/{service}Call a service of a node. The required args and resulting response depend on the specific nodeand service.

Template request

PUT /api/v2/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json application/ubjson

{}

Template response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Parameters

• node (string) – name of the node (required)

• service (string) – name of the service (required)

Request JSON Object

• service args (object) – example args (required)

Request Headers

• Accept – application/json application/ubjson
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – Service call completed (returns Service)

• 403 Forbidden – Service call forbidden, e.g. because there is no valid license forthis module.
• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.3.4)
GET /nodes/{node}/statusGet status of a global node.

Template request

GET /api/v2/nodes/<node>/status HTTP/1.1

Sample response

Basler AGManual: rc_visard 253 Rev: 24.01.1Status: Jan 29, 2024

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": []

}

Parameters

• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns NodeStatus)

• 404 Not Found – node not found
Referenced Data Models

• NodeStatus (Section 7.3.4)
The following list includes all REST-API requests regarding the 3D camera, navigation, detection andconfiguration nodes’ status, parameters, and services calls:
GET /pipelines/{pipeline}/nodesGet list of all available nodes.

Template request

GET /api/v2/pipelines/<pipeline>/nodes HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"name": "rc_stereocalib",
"parameters": [
"grid_width",
"grid_height",
"snap"

],
"services": [
"reset_defaults",
"change_state"

],
"status": "idle"

},
{

"name": "rc_camera",
"parameters": [
"fps",
"exp_auto",
"exp_value",
"exp_max"

],

(continues on next page)

Basler AGManual: rc_visard 254 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)
"services": [
"reset_defaults"

],
"status": "running"

},
{

"name": "rc_hand_eye_calibration",
"parameters": [
"grid_width",
"grid_height",
"robot_mounted"

],
"services": [
"reset_defaults",
"set_pose",
"reset",
"save",
"calibrate",
"get_calibration"

],
"status": "idle"

},
{

"name": "rc_stereo_ins",
"parameters": [],
"services": [],
"status": "idle"

},
{

"name": "rc_stereomatching",
"parameters": [
"quality",
"seg",
"fill",
"minconf",
"mindepth",
"maxdepth",
"maxdeptherr"

],
"services": [

"reset_defaults"
],
"status": "running"

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of NodeInfo)

Referenced Data Models

• NodeInfo (Section 7.3.4)

Basler AGManual: rc_visard 255 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

GET /pipelines/{pipeline}/nodes/{node}Get info on a single node.
Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "rc_camera",
"parameters": [

"fps",
"exp_auto",
"exp_value",
"exp_max"

],
"services": [
"reset_defaults"

],
"status": "running"

}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)
• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns NodeInfo)

• 404 Not Found – node not found
Referenced Data Models

• NodeInfo (Section 7.3.4)
GET /pipelines/{pipeline}/nodes/{node}/parametersGet parameters of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/parameters?name=<name> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",

(continues on next page)

Basler AGManual: rc_visard 256 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)
"type": "float64",
"value": 25

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": true

},
{

"default": 0.007,
"description": "Maximum exposure time in s if exp_auto is true",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_max",
"type": "float64",
"value": 0.007

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)
• node (string) – name of the node (required)

Query Parameters

• name (string) – limit result to parameters with name (optional)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of Parameter)

• 404 Not Found – node not found
Referenced Data Models

• Parameter (Section 7.3.4)
PUT /pipelines/{pipeline}/nodes/{node}/parametersUpdate multiple parameters.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/parameters HTTP/1.1
Accept: application/json application/ubjson

[
{

"name": "string",
"value": {}

}
]

Sample response

Basler AGManual: rc_visard 257 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"default": 25,
"description": "Frames per second in Hz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

},
{

"default": true,
"description": "Switching between auto and manual exposure",
"max": true,
"min": false,
"name": "exp_auto",
"type": "bool",
"value": false

},
{

"default": 0.005,
"description": "Manual exposure time in s if exp_auto is false",
"max": 0.018,
"min": 6.6e-05,
"name": "exp_value",
"type": "float64",
"value": 0.005

}
]

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)
• node (string) – name of the node (required)

Request JSON Array of Objects

• parameters (ParameterNameValue) – array of parameters (required)

Request Headers

• Accept – application/json application/ubjson
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of Parameter)

• 400 Bad Request – invalid parameter value
• 403 Forbidden – Parameter update forbidden, e.g. because they are locked bya running GigE Vision application or there is no valid license for this module.
• 404 Not Found – node not found

Referenced Data Models

• Parameter (Section 7.3.4)
• ParameterNameValue (Section 7.3.4)

Basler AGManual: rc_visard 258 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

GET /pipelines/{pipeline}/nodes/{node}/parameters/{param}Get a specific parameter of a node.
Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/parameters/<param> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": 25,
"description": "Frames per second in Hertz",
"max": 25,
"min": 1,
"name": "fps",
"type": "float64",
"value": 10

}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)
• node (string) – name of the node (required)

• param (string) – name of the parameter (required)
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns Parameter)

• 404 Not Found – node or parameter not found
Referenced Data Models

• Parameter (Section 7.3.4)
PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}Update a specific parameter of a node.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/parameters/<param> HTTP/1.1
Accept: application/json application/ubjson

{
"value": {}

}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"default": 25,
"description": "Frames per second in Hertz",
"max": 25,
"min": 1,

(continues on next page)

Basler AGManual: rc_visard 259 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)
"name": "fps",
"type": "float64",
"value": 10

}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)
• node (string) – name of the node (required)

• param (string) – name of the parameter (required)
Request JSON Object

• parameter (ParameterValue) – parameter to be updated as JSON object (re-
quired)

Request Headers

• Accept – application/json application/ubjson
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns Parameter)

• 400 Bad Request – invalid parameter value
• 403 Forbidden – Parameter update forbidden, e.g. because they are locked bya running GigE Vision application or there is no valid license for this module.
• 404 Not Found – node or parameter not found

Referenced Data Models

• Parameter (Section 7.3.4)
• ParameterValue (Section 7.3.4)

GET /pipelines/{pipeline}/nodes/{node}/servicesGet descriptions of all services a node offers.
Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/services HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"args": {},
"description": "Restarts the module.",
"name": "restart",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

(continues on next page)

Basler AGManual: rc_visard 260 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)
"args": {},
"description": "Starts the module.",
"name": "start",
"response": {

"accepted": "bool",
"current_state": "string"

}
},
{

"args": {},
"description": "Stops the module.",
"name": "stop",
"response": {

"accepted": "bool",
"current_state": "string"

}
}

]

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)
• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of Service)

• 404 Not Found – node not found
Referenced Data Models

• Service (Section 7.3.4)
GET /pipelines/{pipeline}/nodes/{node}/services/{service}Get description of a node’s specific service.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/services/<service> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"args": {

"pose": {
"orientation": {

"w": "float64",
"x": "float64",
"y": "float64",
"z": "float64"

},
"position": {

"x": "float64",
"y": "float64",
"z": "float64"

(continues on next page)

Basler AGManual: rc_visard 261 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)
}

},
"slot": "int32"

},
"description": "Save a pose (grid or gripper) for later calibration.",
"name": "set_pose",
"response": {
"message": "string",
"status": "int32",
"success": "bool"

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)
• node (string) – name of the node (required)

• service (string) – name of the service (required)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns Service)

• 404 Not Found – node or service not found
Referenced Data Models

• Service (Section 7.3.4)
PUT /pipelines/{pipeline}/nodes/{node}/services/{service}Call a service of a node. The required args and resulting response depend on the specific nodeand service.

Template request

PUT /api/v2/pipelines/<pipeline>/nodes/<node>/services/<service> HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"name": "set_pose",
"response": {
"message": "Grid detected, pose stored.",
"status": 1,
"success": true

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)
• node (string) – name of the node (required)

Basler AGManual: rc_visard 262 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

• service (string) – name of the service (required)

Request JSON Object

• service args (object) – example args (required)

Request Headers

• Accept – application/json application/ubjson
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – Service call completed (returns Service)

• 403 Forbidden – Service call forbidden, e.g. because there is no valid license forthis module.
• 404 Not Found – node or service not found

Referenced Data Models

• Service (Section 7.3.4)
GET /pipelines/{pipeline}/nodes/{node}/statusGet status of a node.

Template request

GET /api/v2/pipelines/<pipeline>/nodes/<node>/status HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "running",
"timestamp": 1503075030.2335997,
"values": {
"baseline": "0.0650542",
"color": "0",
"exp": "0.00426667",
"focal": "0.844893",
"fps": "25.1352",
"gain": "12.0412",
"height": "960",
"temp_left": "39.6",
"temp_right": "38.2",
"time": "0.00406513",
"width": "1280"

}
}

Parameters

• pipeline (string) – name of the pipeline (one of 0) (required)
• node (string) – name of the node (required)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

Basler AGManual: rc_visard 263 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://tools.ietf.org/html/rfc7231#section-3.1.1.5

7.3. REST-API interface

• 200 OK – successful operation (returns NodeStatus)

• 404 Not Found – node not found
Referenced Data Models

• NodeStatus (Section 7.3.4)
7.3.3.2 Datastreams

The following resources and requests allow access to and configuration of the rc_dynamics interfacedata streams (Section 7.4). These REST-API requests offer
• showing available and currently running data streams, e.g.,
curl -X GET http://<host>/api/v1/datastreams

• starting a data stream to a destination, e.g.,
curl -X PUT --header 'Content-Type: application/x-www-form-urlencoded' -d 'destination=
→˓<target-ip>:<target-port>' http://<host>/api/v1/datastreams/pose

• and stopping data streams, e.g.,
curl -X DELETE http://<host>/api/v1/datastreams/pose?destination=<target-ip>:<target-port>

The following list includes all REST-API requests associated with data streams:
GET /datastreamsGet list of available data streams.

Template request

GET /api/v2/datastreams HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"description": "Pose of left camera at VisualOdometry rate (~10Hz)",
"destinations": [

"192.168.1.13:30000"
],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

},
{

"description": "Pose of left camera (RealTime 200Hz)",
"destinations": [
"192.168.1.100:20000",
"192.168.1.42:45000"

],
"name": "pose_rt",
"protobuf": "Frame",
"protocol": "UDP"

},
{

"description": "Raw IMU (InertialMeasurementUnit) values (RealTime 200Hz)",
"destinations": [],

(continues on next page)

Basler AGManual: rc_visard 264 Rev: 24.01.1Status: Jan 29, 2024

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)
"name": "imu",
"protobuf": "Imu",
"protocol": "UDP"

},
{

"description": "Dynamics of sensor (pose, velocity, acceleration) (RealTime 200Hz)",
"destinations": [

"192.168.1.100:20001"
],
"name": "dynamics",
"protobuf": "Dynamics",
"protocol": "UDP"

}
]

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of Stream)

Referenced Data Models

• Stream (Section 7.3.4)
GET /datastreams/{stream}Get datastream configuration.

Template request

GET /api/v2/datastreams/<stream> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"description": "Pose of left camera at VisualOdometry rate (~10Hz)",
"destinations": [

"192.168.1.13:30000"
],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

}

Parameters

• stream (string) – name of the stream (required)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns Stream)

• 404 Not Found – datastream not found
Referenced Data Models

Basler AGManual: rc_visard 265 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

• Stream (Section 7.3.4)
PUT /datastreams/{stream}Update a datastream configuration.

Template request

PUT /api/v2/datastreams/<stream> HTTP/1.1
Accept: application/x-www-form-urlencoded

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"description": "Pose of left camera at VisualOdometry rate (~10Hz)",
"destinations": [

"192.168.1.13:30000",
"192.168.1.25:40000"

],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

}

Parameters

• stream (string) – name of the stream (required)

Form Parameters

• destination – destination (“IP:port”) to add (required)

Request Headers

• Accept – application/x-www-form-urlencoded
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns Stream)

• 404 Not Found – datastream not found
Referenced Data Models

• Stream (Section 7.3.4)
DELETE /datastreams/{stream}Delete a destination from the datastream configuration.

Template request

DELETE /api/v2/datastreams/<stream>?destination=<destination> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"description": "Pose of left camera at VisualOdometry rate (~10Hz)",

(continues on next page)

Basler AGManual: rc_visard 266 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)
"destinations": [],
"name": "pose",
"protobuf": "Frame",
"protocol": "UDP"

}

Parameters

• stream (string) – name of the stream (required)

Query Parameters

• destination (string) – destination IP:port to delete, if not specified all destina-tions are deleted (optional)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns Stream)

• 404 Not Found – datastream not found
Referenced Data Models

• Stream (Section 7.3.4)
7.3.3.3 System and logs

The following resources and requests expose the rc_visard’s system-level API. They enable
• access to log files (system-wide or module-specific)
• access to information about the device and run-time statistics such as date, MAC address, clock-time synchronization status, and available resources;
• management of installed software licenses; and
• the rc_visard to be updated with a new firmware image.

GET /logsGet list of available log files.
Template request

GET /api/v2/logs HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

[
{

"date": 1503060035.0625782,
"name": "rcsense-api.log",
"size": 730

},
{

"date": 1503060035.741574,
"name": "stereo.log",
"size": 39024

},

(continues on next page)

Basler AGManual: rc_visard 267 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

(continued from previous page)
{

"date": 1503060044.0475223,
"name": "camera.log",
"size": 1091

},
{

"date": 1503060035.2115774,
"name": "dynamics.log"

}
]

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns array of LogInfo)

Referenced Data Models

• LogInfo (Section 7.3.4)
GET /logs/{log}Get a log file. Content type of response depends on parameter ‘format’.

Template request

GET /api/v2/logs/<log>?format=<format>&limit=<limit> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"date": 1503060035.2115774,
"log": [

{
"component": "rc_stereo_ins",
"level": "INFO",
"message": "Running rc_stereo_ins version 2.4.0",
"timestamp": 1503060034.083

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Starting up communication interfaces",
"timestamp": 1503060034.085

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Autostart disabled",
"timestamp": 1503060034.098

},
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Initializing realtime communication",
"timestamp": 1503060034.209

},

(continues on next page)

Basler AGManual: rc_visard 268 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

(continued from previous page)
{

"component": "rc_stereo_ins",
"level": "INFO",
"message": "Startet state machine in state IDLE",
"timestamp": 1503060034.383

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "Init stereovisodo ...",
"timestamp": 1503060034.814

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "rc_stereovisodo: Using standard VO",
"timestamp": 1503060034.913

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "rc_stereovisodo: Playback mode: false",
"timestamp": 1503060035.132

},
{

"component": "rc_stereovisodo",
"level": "INFO",
"message": "rc_stereovisodo: Ready",
"timestamp": 1503060035.212

}
],
"name": "dynamics.log",
"size": 695

}

Parameters

• log (string) – name of the log file (required)

Query Parameters

• format (string) – return log as JSON or raw (one of json, raw; default: json)
(optional)

• limit (integer) – limit to last x lines in JSON format (default: 100) (optional)
Response Headers

• Content-Type – text/plain application/json
Status Codes

• 200 OK – successful operation (returns Log)

• 404 Not Found – log not found
Referenced Data Models

• Log (Section 7.3.4)
GET /systemGet system information on sensor.

Template request

Basler AGManual: rc_visard 269 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5

7.3. REST-API interface

GET /api/v2/system HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dns": {

"dns_servers": [
"10.0.0.1",
"1.1.1.1"

],
"manual_dns_servers": [
"1.1.1.1"

]
},
"firmware": {

"active_image": {
"image_version": "rc_visard_v1.1.0"

},
"fallback_booted": true,
"inactive_image": {

"image_version": "rc_visard_v1.0.0"
},
"next_boot_image": "active_image"

},
"hostname": "rc-visard-02873515",
"link_speed": 1000,
"mac": "00:14:2D:2B:D8:AB",
"ntp_status": {

"accuracy": "48 ms",
"synchronized": true

},
"ptp_status": {

"master_ip": "",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "off"

},
"ready": true,
"serial": "02873515",
"time": 1504080462.641875,
"uptime": 65457.42

}

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns SysInfo)

Referenced Data Models

• SysInfo (Section 7.3.4)
GET /system/backupGet backup.

Template request

Basler AGManual: rc_visard 270 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

GET /api/v2/system/backup?pipelines=<pipelines>&load_carriers=<load_carriers>®ions_of_

→˓interest=<regions_of_interest>&grippers=<grippers> HTTP/1.1

Query Parameters

• pipelines (boolean) – backup pipelines with node settings, i.e. parameters andpreferred_orientation (default: True) (optional)
• load_carriers (boolean) – backup load_carriers (default: True) (optional)
• regions_of_interest (boolean) – backup regions_of_interest (default: True)
(optional)

• grippers (boolean) – backup grippers (default: True) (optional)
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation
POST /system/backupRestore backup.

Template request

POST /api/v2/system/backup HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"return_code": {
"message": "backup restored",
"value": 0

},
"warnings": []

}

Request JSON Object

• backup (object) – backup data as json object (required)
Request Headers

• Accept – application/json application/ubjson
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation
GET /system/dnsGet DNS settings.

Template request

Basler AGManual: rc_visard 271 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

GET /api/v2/system/dns HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dns": {

"dns_servers": [
"10.0.0.1",
"1.1.1.1"

],
"manual_dns_servers": [
"1.1.1.1"

]
}

}

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns DNS)

Referenced Data Models

• DNS (Section 7.3.4)
PUT /system/dnsSet manual DNS servers.

Template request

PUT /api/v2/system/dns HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dns": {

"dns_servers": [
"10.0.0.1",
"1.1.1.1"

],
"manual_dns_servers": [
"1.1.1.1"

]
}

}

Request JSON Object

• manual_dns_servers (ManualDNSServers) – Manual DNS servers (required)

Request Headers

Basler AGManual: rc_visard 272 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

• Accept – application/json application/ubjson
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns DNS)

• 400 Bad Request – invalid/missing arguments
Referenced Data Models

• DNS (Section 7.3.4)
• ManualDNSServers (Section 7.3.4)

GET /system/licenseGet information about licenses installed on sensor.
Template request

GET /api/v2/system/license HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"components": {

"calibration": true,
"fusion": true,
"hand_eye_calibration": true,
"rectification": true,
"self_calibration": true,
"slam": false,
"stereo": true,
"svo": true

},
"valid": true

}

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns LicenseInfo)

Referenced Data Models

• LicenseInfo (Section 7.3.4)
POST /system/licenseUpdate license on sensor with a license file.

Template request

POST /api/v2/system/license HTTP/1.1
Accept: multipart/form-data

Form Parameters

• file – license file (required)

Basler AGManual: rc_visard 273 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

Request Headers

• Accept – multipart/form-data
Status Codes

• 200 OK – successful operation
• 400 Bad Request – not a valid license

GET /system/networkGet current network configuration.
Template request

GET /api/v2/system/network HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"current_method": "DHCP",
"default_gateway": "10.0.3.254",
"ip_address": "10.0.1.41",
"settings": {

"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

},
"subnet_mask": "255.255.252.0"

}

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns NetworkInfo)

Referenced Data Models

• NetworkInfo (Section 7.3.4)
GET /system/network/settingsGet current network settings.

Template request

GET /api/v2/system/network/settings HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,

(continues on next page)

Basler AGManual: rc_visard 274 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

(continued from previous page)
"persistent_subnet_mask": "255.255.255.0"

}

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns NetworkSettings)

Referenced Data Models

• NetworkSettings (Section 7.3.4)
PUT /system/network/settingsSet current network settings.

Template request

PUT /api/v2/system/network/settings HTTP/1.1
Accept: application/json application/ubjson

{}

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"dhcp_enabled": true,
"persistent_default_gateway": "",
"persistent_ip_address": "192.168.0.10",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "255.255.255.0"

}

Request JSON Object

• settings (NetworkSettings) – network settings to apply (required)

Request Headers

• Accept – application/json application/ubjson
Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns NetworkSettings)

• 400 Bad Request – invalid/missing arguments
• 403 Forbidden – Changing network settings forbidden because this is locked bya running GigE Vision application.

Referenced Data Models

• NetworkSettings (Section 7.3.4)
PUT /system/rebootReboot the sensor.

Template request

Basler AGManual: rc_visard 275 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

7.3. REST-API interface

PUT /api/v2/system/reboot HTTP/1.1

Status Codes

• 200 OK – successful operation
GET /system/rollbackGet information about currently active and inactive firmware/system images on sensor.

Template request

GET /api/v2/system/rollback HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_visard_v1.1.0"

},
"fallback_booted": false,
"inactive_image": {

"image_version": "rc_visard_v1.0.0"
},
"next_boot_image": "active_image"

}

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns FirmwareInfo)

Referenced Data Models

• FirmwareInfo (Section 7.3.4)
PUT /system/rollbackRollback to previous firmware version (inactive system image).

Template request

PUT /api/v2/system/rollback HTTP/1.1

Status Codes

• 200 OK – successful operation
• 400 Bad Request – already set to use inactive partition on next boot
• 500 Internal Server Error – internal error

GET /system/timeGet system time in UTC as string with format “YYYY-MM-DD hh:mm:ss”
Template request

GET /api/v2/system/time HTTP/1.1

Sample response

Basler AGManual: rc_visard 276 Rev: 24.01.1Status: Jan 29, 2024

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1

7.3. REST-API interface

HTTP/1.1 200 OK
Content-Type: application/json

{
"utc": "2023-10-05 08:35:26"

}

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation
PUT /system/timeSet system time in UTC as string with format “YYYY-MM-DD hh:mm:ss”

Template request

PUT /api/v2/system/time?utc=<utc> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"utc": "2023-10-05 08:35:26"

}

Query Parameters

• utc (string) – Time in UTC as string with format “YYYY-MM-DD hh:mm:ss” (re-
quired)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation
• 400 Bad Request – invalid/missing arguments
• 403 Forbidden–Changing time forbidden because time is synchronized via NTPor PTP.

GET /system/ui_lockGet UI lock status.
Template request

GET /api/v2/system/ui_lock HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": false

}

Basler AGManual: rc_visard 277 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

7.3. REST-API interface

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns UILock)

Referenced Data Models

• UILock (Section 7.3.4)
DELETE /system/ui_lockRemove UI lock.

Template request

DELETE /api/v2/system/ui_lock HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": false,
"valid": false

}

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation
POST /system/ui_lockVerify or set UI lock.

Template request

POST /api/v2/system/ui_lock?hash=<hash>&set=<set> HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"enabled": true,
"valid": true

}

Query Parameters

• hash (string) – hash of the UI lock password (required)

• set (boolean) – set new hash instead of veryfing (optional)

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation

Basler AGManual: rc_visard 278 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

7.3. REST-API interface

GET /system/updateGet information about currently active and inactive firmware/system images on sensor.
Template request

GET /api/v2/system/update HTTP/1.1

Sample response

HTTP/1.1 200 OK
Content-Type: application/json

{
"active_image": {
"image_version": "rc_visard_v1.1.0"

},
"fallback_booted": false,
"inactive_image": {

"image_version": "rc_visard_v1.0.0"
},
"next_boot_image": "active_image"

}

Response Headers

• Content-Type – application/json application/ubjson
Status Codes

• 200 OK – successful operation (returns FirmwareInfo)

Referenced Data Models

• FirmwareInfo (Section 7.3.4)
POST /system/updateUpdate firmware/system image with a mender artifact. Reboot is required afterwards in order toactivate updated firmware version.

Template request

POST /api/v2/system/update HTTP/1.1
Accept: multipart/form-data

Form Parameters

• file – mender artifact file (required)

Request Headers

• Accept – multipart/form-data
Status Codes

• 200 OK – successful operation
• 400 Bad Request – client error, e.g. no valid mender artifact

7.3.4 Data type definitions

The REST-API defines the following data models, which are used to access or modify the available re-
sources (Section 7.3.3) either as required attributes/parameters of the requests or as return types.
DNS: DNS settings.

An object of type DNS has the following properties:
Basler AGManual: rc_visard 279 Rev: 24.01.1Status: Jan 29, 2024

https://tools.ietf.org/html/rfc7231#section-3.1.1.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://tools.ietf.org/html/rfc7231#section-5.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1

7.3. REST-API interface

• dns_servers (array of string)
• manual_dns_servers (array of string)

Template object

{
"dns_servers": [

"string",
"string"

],
"manual_dns_servers": [

"string",
"string"

]
}

DNS objects are nested in SysInfo, and are used in the following requests:
• GET /system/dns

• PUT /system/dns

FirmwareInfo: Information about currently active and inactive firmware images, and what image is/willbe booted.
An object of type FirmwareInfo has the following properties:

• active_image (ImageInfo) - see description of ImageInfo

• fallback_booted (boolean) - true if desired image could not be booted and fallback boot tothe previous image occurred
• inactive_image (ImageInfo) - see description of ImageInfo

• next_boot_image (string) - firmware image thatwill be booted next time (one of active_image,
inactive_image)

Template object

{
"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

}

FirmwareInfo objects are nested in SysInfo, and are used in the following requests:
• GET /system/rollback

• GET /system/update

GripperElement: CAD gripper element
An object of type GripperElement has the following properties:

• id (string) - Unique identifier of the element
Template object

{
"id": "string"

}

Basler AGManual: rc_visard 280 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

GripperElement objects are used in the following requests:
• GET /cad/gripper_elements

• GET /cad/gripper_elements/{id}

• PUT /cad/gripper_elements/{id}

ImageInfo: Information about specific firmware image.
An object of type ImageInfo has the following properties:

• image_version (string) - image version
Template object

{
"image_version": "string"

}

ImageInfo objects are nested in FirmwareInfo.
LicenseComponentConstraint: Constraints on the module version.

An object of type LicenseComponentConstraint has the following properties:
• max_version (string) - optional maximum supported version (exclusive)
• min_version (string) - optional minimum supported version (inclusive)

Template object

{
"max_version": "string",
"min_version": "string"

}

LicenseComponentConstraint objects are nested in LicenseConstraints.
LicenseComponents: List of the licensing status of the individual software modules. The respectiveflag is true if the module is unlocked with the currently applied software license.

An object of type LicenseComponents has the following properties:
• calibration (boolean) - camera calibration module
• fusion (boolean) - stereo ins/fusion modules
• hand_eye_calibration (boolean) - hand-eye calibration module
• rectification (boolean) - image rectification module
• self_calibration (boolean) - camera self-calibration module
• slam (boolean) - SLAM module
• stereo (boolean) - stereo matching module
• svo (boolean) - visual odometry module

Template object

{
"calibration": false,
"fusion": false,
"hand_eye_calibration": false,
"rectification": false,
"self_calibration": false,
"slam": false,
"stereo": false,

(continues on next page)

Basler AGManual: rc_visard 281 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

(continued from previous page)
"svo": false

}

LicenseComponents objects are nested in LicenseInfo.
LicenseConstraints: Version constrains for modules.

An object of type LicenseConstraints has the following properties:
• image_version (LicenseComponentConstraint) - see description of LicenseComponentCon-
straint

Template object

{
"image_version": {

"max_version": "string",
"min_version": "string"

}
}

LicenseConstraints objects are nested in LicenseInfo.
LicenseInfo: Information about the currently applied software license on the sensor.

An object of type LicenseInfo has the following properties:
• components (LicenseComponents) - see description of LicenseComponents

• components_constraints (LicenseConstraints) - see description of LicenseConstraints
• valid (boolean) - indicates whether the license is valid or not

Template object

{
"components": {

"calibration": false,
"fusion": false,
"hand_eye_calibration": false,
"rectification": false,
"self_calibration": false,
"slam": false,
"stereo": false,
"svo": false

},
"components_constraints": {
"image_version": {

"max_version": "string",
"min_version": "string"

}
},
"valid": false

}

LicenseInfo objects are used in the following requests:
• GET /system/license

Log: Content of a specific log file represented in JSON format.
An object of type Log has the following properties:

• date (float) - UNIX time when log was last modified
• log (array of LogEntry) - the actual log entries

Basler AGManual: rc_visard 282 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

• name (string) - name of log file
• size (integer) - size of log file in bytes

Template object

{
"date": 0,
"log": [

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

},
{

"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}
],
"name": "string",
"size": 0

}

Log objects are used in the following requests:
• GET /logs/{log}

LogEntry: Representation of a single log entry in a log file.
An object of type LogEntry has the following properties:

• component (string) - module name that created this entry
• level (string) - log level (one of DEBUG, INFO, WARN, ERROR, FATAL)
• message (string) - actual log message
• timestamp (float) - Unix time of log entry

Template object

{
"component": "string",
"level": "string",
"message": "string",
"timestamp": 0

}

LogEntry objects are nested in Log.
LogInfo: Information about a specific log file.

An object of type LogInfo has the following properties:
• date (float) - UNIX time when log was last modified
• name (string) - name of log file
• size (integer) - size of log file in bytes

Template object

{
"date": 0,
"name": "string",

(continues on next page)

Basler AGManual: rc_visard 283 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

(continued from previous page)
"size": 0

}

LogInfo objects are used in the following requests:
• GET /logs

ManualDNSServers: List of manual DNS servers.
An object of type ManualDNSServers has the following properties:

• manual_dns_servers (array of string)
Template object

{
"manual_dns_servers": [

"string",
"string"

]
}

ManualDNSServers objects are used in the following requests:
• PUT /system/dns

NetworkInfo: Current network configuration.
An object of type NetworkInfo has the following properties:

• current_method (string) - method by which current settings were applied (one of INIT,
LinkLocal, DHCP, PersistentIP, TemporaryIP)

• default_gateway (string) - current default gateway
• ip_address (string) - current IP address
• settings (NetworkSettings) - see description of NetworkSettings

• subnet_mask (string) - current subnet mask
Template object

{
"current_method": "string",
"default_gateway": "string",
"ip_address": "string",
"settings": {

"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "string"

},
"subnet_mask": "string"

}

NetworkInfo objects are nested in SysInfo, and are used in the following requests:
• GET /system/network

NetworkSettings: Current network settings.
An object of type NetworkSettings has the following properties:

• dhcp_enabled (boolean) - DHCP enabled
• persistent_default_gateway (string) - Persistent default gateway

Basler AGManual: rc_visard 284 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

• persistent_ip_address (string) - Persistent IP address
• persistent_ip_enabled (boolean) - Persistent IP enabled
• persistent_subnet_mask (string) - Persistent subnet mask

Template object

{
"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "string"

}

NetworkSettings objects are nested in NetworkInfo, and are used in the following requests:
• GET /system/network/settings

• PUT /system/network/settings

NodeInfo: Description of a computational node running on sensor.
An object of type NodeInfo has the following properties:

• name (string) - name of the node
• parameters (array of string) - list of the node’s run-time parameters
• services (array of string) - list of the services this node offers
• status (string) - status of the node (one of unknown, down, idle, running)

Template object

{
"name": "string",
"parameters": [

"string",
"string"

],
"services": [

"string",
"string"

],
"status": "string"

}

NodeInfo objects are used in the following requests:
• GET /nodes

• GET /nodes/{node}

• GET /pipelines/{pipeline}/nodes

• GET /pipelines/{pipeline}/nodes/{node}

NodeStatus: Detailed current status of the node including run-time statistics.
An object of type NodeStatus has the following properties:

• status (string) - status of the node (one of unknown, down, idle, running)
• timestamp (float) - Unix time when values were last updated
• values (object) - dictionary with current status/statistics of the node

Template object

Basler AGManual: rc_visard 285 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

{
"status": "string",
"timestamp": 0,
"values": {}

}

NodeStatus objects are used in the following requests:
• GET /nodes/{node}/status

• GET /pipelines/{pipeline}/nodes/{node}/status

NtpStatus: Status of the NTP time sync.
An object of type NtpStatus has the following properties:

• accuracy (string) - time sync accuracy reported by NTP
• synchronized (boolean) - synchronized with NTP server

Template object

{
"accuracy": "string",
"synchronized": false

}

NtpStatus objects are nested in SysInfo.
Parameter: Representation of a node’s run-time parameter. The parameter’s ‘value’ type (and hence thetypes of the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be oneof the built-in primitive data types.

An object of type Parameter has the following properties:
• default (type not defined) - the parameter’s default value
• description (string) - description of the parameter
• max (type not defined) - maximum value this parameter can be assigned to
• min (type not defined) - minimum value this parameter can be assigned to
• name (string) - name of the parameter
• type (string) - the parameter’s primitive type represented as string (one of bool, int8, uint8,
int16, uint16, int32, uint32, int64, uint64, float32, float64, string)

• value (type not defined) - the parameter’s current value
Template object

{
"default": {},
"description": "string",
"max": {},
"min": {},
"name": "string",
"type": "string",
"value": {}

}

Parameter objects are used in the following requests:
• GET /pipelines/{pipeline}/nodes/{node}/parameters

• PUT /pipelines/{pipeline}/nodes/{node}/parameters

• GET /pipelines/{pipeline}/nodes/{node}/parameters/{param}

Basler AGManual: rc_visard 286 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

• PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

ParameterNameValue: Parameter name and value. The parameter’s ‘value’ type (and hence the typesof the ‘min’, ‘max’ and ‘default’ fields) can be inferred from the ‘type’ field and might be one of thebuilt-in primitive data types.
An object of type ParameterNameValue has the following properties:

• name (string) - name of the parameter
• value (type not defined) - the parameter’s current value

Template object

{
"name": "string",
"value": {}

}

ParameterNameValue objects are used in the following requests:
• PUT /pipelines/{pipeline}/nodes/{node}/parameters

ParameterValue: Parameter value. The parameter’s ‘value’ type (and hence the types of the ‘min’, ‘max’and ‘default’ fields) can be inferred from the ‘type’ field and might be one of the built-in primitivedata types.
An object of type ParameterValue has the following properties:

• value (type not defined) - the parameter’s current value
Template object

{
"value": {}

}

ParameterValue objects are used in the following requests:
• PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param}

PtpStatus: Status of the IEEE1588 (PTP) time sync.
An object of type PtpStatus has the following properties:

• master_ip (string) - IP of the master clock
• offset (float) - time offset in seconds to the master
• offset_dev (float) - standard deviation of time offset in seconds to the master
• offset_mean (float) - mean time offset in seconds to the master
• state (string) - state of PTP (one of off, unknown, INITIALIZING, FAULTY, DISABLED, LISTENING,
PASSIVE, UNCALIBRATED, SLAVE)

Template object

{
"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

}

PtpStatus objects are nested in SysInfo.

Basler AGManual: rc_visard 287 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

Service: Representation of a service that a node offers.
An object of type Service has the following properties:

• args (ServiceArgs) - see description of ServiceArgs
• description (string) - short description of this service
• name (string) - name of the service
• response (ServiceResponse) - see description of ServiceResponse

Template object

{
"args": {},
"description": "string",
"name": "string",
"response": {}

}

Service objects are used in the following requests:
• GET /nodes/{node}/services

• GET /nodes/{node}/services/{service}

• PUT /nodes/{node}/services/{service}

• GET /pipelines/{pipeline}/nodes/{node}/services

• GET /pipelines/{pipeline}/nodes/{node}/services/{service}

• PUT /pipelines/{pipeline}/nodes/{node}/services/{service}

ServiceArgs: Arguments required to call a service with. The general representation of these argumentsis a (nested) dictionary. The specific content of this dictionary depends on the respective nodeand service call.
ServiceArgs objects are nested in Service.

ServiceResponse: The response returned by the service call. The general representation of this re-sponse is a (nested) dictionary. The specific content of this dictionary depends on the respectivenode and service call.
ServiceResponse objects are nested in Service.

Stream: Representation of a data stream offered by the rc_dynamics interface.
An object of type Stream has the following properties:

• destinations (array of StreamDestination) - list of destinations this data is currently streamedto
• name (string) - the data stream’s name specifying which rc_dynamics data is streamed
• type (StreamType) - see description of StreamType

Template object

{
"destinations": [

"string",
"string"

],
"name": "string",
"type": {

"protobuf": "string",
"protocol": "string"

(continues on next page)

Basler AGManual: rc_visard 288 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

(continued from previous page)
}

}

Stream objects are used in the following requests:
• GET /datastreams

• GET /datastreams/{stream}

• PUT /datastreams/{stream}

• DELETE /datastreams/{stream}

StreamDestination: A destination of an rc_dynamics data stream represented as string such as ‘IP:port’
An object of type StreamDestination is of primitive type string.
StreamDestination objects are nested in Stream.

StreamType: Description of a data stream’s protocol.
An object of type StreamType has the following properties:

• protobuf (string) - type of data-serialization, i.e. name of protobuf message definition
• protocol (string) - network protocol of the stream [UDP]

Template object

{
"protobuf": "string",
"protocol": "string"

}

StreamType objects are nested in Stream.
SysInfo: System information about the sensor.

An object of type SysInfo has the following properties:
• dns (DNS) - see description of DNS

• firmware (FirmwareInfo) - see description of FirmwareInfo

• hostname (string) - Hostname
• link_speed (integer) - Ethernet link speed in Mbps
• mac (string) - MAC address
• network (NetworkInfo) - see description of NetworkInfo

• ntp_status (NtpStatus) - see description of NtpStatus

• ptp_status (PtpStatus) - see description of PtpStatus
• ready (boolean) - system is fully booted and ready
• serial (string) - sensor serial number
• time (float) - system time as Unix timestamp
• ui_lock (UILock) - see description of UILock
• uptime (float) - system uptime in seconds

Template object

Basler AGManual: rc_visard 289 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

{
"dns": {

"dns_servers": [
"string",
"string"

],
"manual_dns_servers": [
"string",
"string"

]
},
"firmware": {

"active_image": {
"image_version": "string"

},
"fallback_booted": false,
"inactive_image": {
"image_version": "string"

},
"next_boot_image": "string"

},
"hostname": "string",
"link_speed": 0,
"mac": "string",
"network": {
"current_method": "string",
"default_gateway": "string",
"ip_address": "string",
"settings": {

"dhcp_enabled": false,
"persistent_default_gateway": "string",
"persistent_ip_address": "string",
"persistent_ip_enabled": false,
"persistent_subnet_mask": "string"

},
"subnet_mask": "string"

},
"ntp_status": {

"accuracy": "string",
"synchronized": false

},
"ptp_status": {

"master_ip": "string",
"offset": 0,
"offset_dev": 0,
"offset_mean": 0,
"state": "string"

},
"ready": false,
"serial": "string",
"time": 0,
"ui_lock": {
"enabled": false

},
"uptime": 0

}

SysInfo objects are used in the following requests:
• GET /system

Template: Detection template
An object of type Template has the following properties:

Basler AGManual: rc_visard 290 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

• id (string) - Unique identifier of the template
Template object

{
"id": "string"

}

Template objects are used in the following requests:
• GET /templates/rc_boxpick

• GET /templates/rc_boxpick/{id}

• PUT /templates/rc_boxpick/{id}

• GET /templates/rc_silhouettematch

• GET /templates/rc_silhouettematch/{id}

• PUT /templates/rc_silhouettematch/{id}

UILock: UI lock status.
An object of type UILock has the following properties:

• enabled (boolean)
Template object

{
"enabled": false

}

UILock objects are nested in SysInfo, and are used in the following requests:
• GET /system/ui_lock

7.3.5 Swagger UI

The rc_visard’s Swagger UI allows developers to easily visualize and interact with the REST-API, e.g., fordevelopment and testing. Accessing http://<host>/api/ or http://<host>/api/swagger (the formerwill automatically be redirected to the latter) opens a visualization of the rc_visard’s general API structureincluding all available resources and requests (Section 7.3.3) and offers a simple user interface forexploring all of its features.
Note: Users must be aware that, although the rc_visard’s Swagger UI is designed to explore and testthe REST-API, it is a fully functional interface. That is, any issued requests are actually processed andparticularly PUT, POST, and DELETE requests might change the overall status and/or behavior of thedevice.

Basler AGManual: rc_visard 291 Rev: 24.01.1Status: Jan 29, 2024

https://swagger.io/

7.3. REST-API interface

Fig. 7.2: Initial view of the rc_visard’s Swagger UI with its resources and requests
Using this interface, available resources and requests can be explored by clicking on them to uncollapseor recollapse them. The following figure shows an example of how to get a node’s current status byfilling in the necessary parameters (pipeline number and node name) and clicking Execute. This actionresults in the Swagger UI showing, amongst others, the actual curl command that was executed whenissuing the request as well as the response body showing the current status of the requested node in aJSON-formatted string.
Basler AGManual: rc_visard 292 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

Fig. 7.3: Result of requesting the rc_stereomatching node’s status
Some actions, such as setting parameters or calling services, require more complex parameters to anHTTP request. The Swagger UI allows developers to explore the attributes required for these actionsduring run-time, as shown in the next example. In the figure below, the attributes required for the the
rc_hand_eye_calibration node’s set_pose service are explored by performing a GET request on thisresource. The response features a full description of the service offered, including all required argumentswith their names and types as a JSON-formatted string.

Basler AGManual: rc_visard 293 Rev: 24.01.1Status: Jan 29, 2024

7.3. REST-API interface

Fig. 7.4: The result of the GET request on the set_pose service shows the required arguments for thisservice call.
Users can easily use this preformatted JSON string as a template for the service arguments to actuallycall the service:

Basler AGManual: rc_visard 294 Rev: 24.01.1Status: Jan 29, 2024

7.4. The rc_dynamics interface

Fig. 7.5: Filling in the arguments of the set_pose service request

7.4 The rc_dynamics interface

The rc_dynamics interface offers continuous, real-time data-stream access to rc_visard’s several dy-
namic state estimates (Section 6.2.1.2) as continuous, real-time data streams. It allows state estimatesof all offered types to be configured to be streamed to any host in the network. The Data-stream proto-
col (Section 7.4.3) used is agnostic w.r.t. operating system and programming language.

7.4.1 Starting/stopping dynamic-state estimation

The rc_visard’s dynamic-state estimates are only available if the respective module, i.e., the sensor dy-
namics module (Section 6.2.1), is turned on. This can be done either in the Web GUI - a respective switchis offered on the Dynamics page - or via the REST-API by using the module’s service calls. A sample curlrequest to start dynamic-state estimation would look like:
curl -X PUT --header 'Content-Type: application/json' -d '{}' 'http://<host>/api/v1/nodes/rc_

→˓dynamics/services/start'

Note: To save computational resources, it is recommended to stop dynamic-state estimation whennot needed any longer.

7.4.2 Configuring data streams

Available data streams, i.e., dynamic-state estimates, can be listed and configured by the rc_visard’sREST-API (Section 7.3.3.2), e.g., a list of all available data streams can be requested with GET /

Basler AGManual: rc_visard 295 Rev: 24.01.1Status: Jan 29, 2024

7.4. The rc_dynamics interface

datastreams. For a detailed description of the following data streams, please refer to Available state
estimates (Section 6.2.1.2).

Table 7.2: Available data streams via the rc_dynamics interface
Name Protocol Protobuf Description
dynamics UDP Dynamics Dynamics of sensor (pose, velocity, acceleration) from INSor SLAM (best effort depending on availability) at realtimefrequency (IMU rate)
dynamics_ins UDP Dynamics Dynamics of sensor (pose, velocity, acceleration) fromstereo INS at realtime frequency (IMU rate)
imu UDP Imu Raw IMU (Inertial Measurement Unit) values at realtimefrequency (IMU rate)
pose UDP Frame Pose of left camera from INS or SLAM (best effortdepending on availability) at maximum camera frequency(fps)
pose_ins UDP Frame Pose of left camera from stereo INS at maximum camerafrequency (fps)
pose_rt UDP Frame Pose of left camera from INS or SLAM (best effortdepending on availability) at realtime frequency (IMU rate)
pose_rt_ins UDP Frame Pose of left camera from stereo INS at realtime frequency(IMU rate)

The general procedure for working with the rc_dynamics interface is the following:
1. Request a data stream via REST-API. The following sample curl command issues a PUT /

datastreams/{stream} request to initiate a streamof type pose_rt from the rc_visard to clienthost 10.0.1.14 at port 30000:
curl -X PUT --header 'Content-Type: application/x-www-form-urlencoded' --header
→˓'Accept: application/json' -d 'destination=10.0.1.14:30000' 'http://<host>/api/v1/
→˓datastreams/pose_rt'

2. Receive and deserialize data. With a successful request, the stream is initiated and data of thespecified stream type is continuously sent to the client host. According to the Data-stream
protocol (Section 7.4.3), the client needs to receive, deserialize and process the data.

3. Stop a requested data stream via REST-API. The following sample curl command issues a
DELETE /datastreams/{stream} request to delete, i.e., stop, the previously requested streamof type pose_rt with destination 10.0.1.14:30000:
curl -X DELETE --header 'Accept: application/json' 'http://<host>/api/v1/datastreams/
→˓pose_rt?destination=10.0.1.14:30000'

To remove all destinations for a stream, simply omit the destination parameter.
Warning: Data streams can not be deleted automatically, i.e., the rc_visard keeps streaming dataeven if the client-side is disconnected or has stopped consuming the sent datagrams. A maximumof 10 destinations per stream are allowed. It is therefore strongly recommended to stop data streamsvia the REST-API when they are or no longer used.

7.4.3 Data-stream protocol

Once a data stream is established, data is continuously sent to the specified client host and port(destination) via the following protocol:
Network protocol: The only currently supported network protocol is UDP, i.e., data is sent as UDP data-grams.

Basler AGManual: rc_visard 296 Rev: 24.01.1Status: Jan 29, 2024

7.4. The rc_dynamics interface

Data serialization: The data being sent is serialized via Google protocol buffers. The followingmessagetype definitions are used.
• The camera-pose streams and real-time camera-pose streams (Section 6.2.1.2) are serializedusing the Frame message type:

message Frame
{
optional PoseStamped pose = 1;
optional string parent = 2; // Name of the parent frame
optional string name = 3; // Name of the frame
optional string producer = 4; // Name of the producer of this data

}

The producer field can take the values ins, slam, rt_ins, and rt_slam, indicating whether thedata was computed by SLAM or Stereo INS, and is real-time (rt) or not.
• The real-time dynamics stream (Section 6.2.1.2) is serialized using the Dynamics messagetype:

message Dynamics
{
optional Time timestamp = 1; // Time when the data was

→˓captured
optional Pose pose = 2;
optional string pose_frame = 3; // Name of the frame that

→˓the pose is given in
optional Vector3d linear_velocity = 4; // Linear velocity in m/s
optional string linear_velocity_frame = 5; // Name of the frame that

→˓the linear_velocity is given in
optional Vector3d angular_velocity = 6; // Angular velocity in rad/s
optional string angular_velocity_frame = 7; // Name of the frame that

→˓the angular_velocity is given in
optional Vector3d linear_acceleration = 8; // Gravity compensated

→˓linear acceleration in m/s2

optional string linear_acceleration_frame = 9; // Name of the frame that
→˓the acceleration is given in
repeated double covariance = 10 [packed=true]; // Row-major

→˓representation of the 15x15 covariance matrix
optional Frame cam2imu_transform = 11; // pose of the left camera

→˓wrt. the IMU frame
optional bool possible_jump = 12; // True if there possibly

→˓was a jump in the pose estimation
optional string producer = 13; // Name of the producer of

→˓this data
}

The producer field can take the values rt_ins and rt_slam, indicating whether the data wascomputed by SLAM or Stereo INS.
• The IMU stream (Section 6.2.1.2) is serialized using the Imu message type:

message Imu
{
optional Time timestamp = 1; // Time when the data was

→˓captured
optional Vector3d linear_acceleration = 2; // Linear acceleration in m/

→˓s2 measured by the IMU
optional Vector3d angular_velocity = 3; // Angular velocity in rad/

→˓s measured by the IMU
}

• The nested types PoseStamped, Pose, Time, Quaternion, and Vector3D are defined as follows:

Basler AGManual: rc_visard 297 Rev: 24.01.1Status: Jan 29, 2024

https://developers.google.com/protocol-buffers/

7.5. KUKA Ethernet KRL Interface

message PoseStamped
{
optional Time timestamp = 1; // Time when the data was captured
optional Pose pose = 2;

}

message Pose
{
optional Vector3d position = 1; // Position in meters
optional Quaternion orientation = 2; // Orientation as unit quaternion
repeated double covariance = 3 [packed=true]; // Row-major

→˓representation of the 6x6 covariance matrix (x, y, z, rotation about X axis,
→˓rotation about Y axis, rotation about Z axis)
}

message Time
{
/// \brief Seconds
optional int64 sec = 1;

/// \brief Nanoseconds
optional int32 nsec = 2;

}

message Quaternion
{
optional double x = 2;
optional double y = 3;
optional double z = 4;
optional double w = 5;

}

message Vector3d
{
optional double x = 1;
optional double y = 2;
optional double z = 3;

}

7.4.4 rc_dynamics_api

The open-source rc_dynamics_api package provides a simple, convenient C++ wrapper to request andparse rc_dynamics streams.

7.5 KUKA Ethernet KRL Interface

The rc_visard provides an Ethernet KRL Interface (EKI Bridge), which allows communicating with the
rc_visard from KUKA KRL via KUKA.EthernetKRL XML.
Note: The component is optional and requires a separate Basler’s EKIBridge license (Section 8.7) tobe purchased.
Note: The KUKA.EthernetKRL add-on software package version 2.2 or newer must be activated onthe robot controller to use this component.

The EKI Bridge can be used to programmatically
Basler AGManual: rc_visard 298 Rev: 24.01.1Status: Jan 29, 2024

7.5. KUKA Ethernet KRL Interface

• do service calls, e.g. to start and stop individual computational nodes, or to use offered servicessuch as the hand-eye calibration or the computation of grasp poses;
• set and get run-time parameters of computation nodes, e.g. of the camera, or disparity calculation.

Note: A known limitation of the EKI Bridge is that strings representing valid numbers will be convertedto int/float. Hence user-defined names (like ROI IDs, etc.) should always contain at least one letterso they can be used in service call arguments.

7.5.1 Ethernet connection configuration

The EKI Bridge listens on port 7000 for EKI XML messages and transparently bridges the rc_visard’s
REST-API v2 (Section 7.3). The received EKI messages are transformed to JSON and forwarded to the
rc_visard’s REST-API. The response from the REST-API is transformed back to EKI XML.
The EKI Bridge gives access to run-time parameters and offered services of all computational nodesdescribed in Software modules (Section 6).
The Ethernet connection to the rc_visard on the robot controller is configured using XML configurationfiles.
Each node offering run-time parameters has an XML configuration file for setting and getting its parame-ters. These are named following the scheme <node_name>-parameters.xml. Each node’s service has itsown XML configuration file. These are named following the scheme <node_name>-<service_name>.xml.
The IP of the rc_visard in the network needs to be filled in the XML file.
These files must be stored in the directory C:\KRC\ROBOTER\Config\User\Common\EthernetKRL of therobot controller and they are read in when a connection is initialized.
As an example, an Ethernet connection to configure the rc_stereomatching parameters is establishedwith the following KRL code.

DECL EKI_Status RET
RET = EKI_INIT("rc_stereomatching-parameters")
RET = EKI_Open("rc_stereomatching-parameters")

; ----------- Desired operation -----------

RET = EKI_Close("rc_stereomatching-parameters")

Note: The EKI Bridge automatically terminates the connection to the client if the received XML tele-gram is invalid.

7.5.2 Generic XML structure

For data transmission, the EKI Bridge uses <req> as root XML element (short for request).
The root tag always includes the following elements.

• <node>. This includes a child XML element used by the EKI Bridge to identify the target node. Thenode name is already included in the XML configuration file.
• <end_of_request>. End of request flag that triggers the request.

The following listing shows the generic XML structure for data transmission.
<SEND>

<XML>
<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>

(continues on next page)

Basler AGManual: rc_visard 299 Rev: 24.01.1Status: Jan 29, 2024

7.5. KUKA Ethernet KRL Interface

(continued from previous page)
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

For data reception, the EKI Bridge uses <res> as root XML element (short for response). The root tagalways includes a <return_code> child element.
<RECEIVE>

<XML>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

Note: By default the XML configuration files uses 998 as flag to notify KRL that the response datarecord has been received. If this value is already in use, it should be changed in the correspondingXML configuration file.

7.5.2.1 Return code

The <return_code> element consists of a value and a message attribute.
As for all other components, a successful request returns with a res/return_code/@value of 0. Neg-ative values indicate that the request failed. The error message is contained in res/return_code/
@message. Positive values indicate that the request succeeded with additional information, containedin res/return_code/@message as well.
The following codes can be issued by the EKI Bridge component.

Table 7.3: Return codes of the EKI Bridge component
Code Description0 Success-1 Parsing error in the conversion from XML to JSON-2 Internal error-5 Connection error from the REST-API-9 Missing or invalid license for EKI Bridge component

Note: The EKI Bridge can also return return code values specific to individual nodes. They are docu-mented in the respective software module (Section 6).
Note: Due to limitations in KRL, the maximum length of a string returned by the EKI Bridge is 512characters. All messages larger than this value are truncated.

7.5.3 Services

For the nodes’ services, the XML schema is generated from the service’s arguments and response inJavaScript Object Notation (JSON) described in Software modules (Section 6). The conversion is donetransparently, except for the conversion rules described below.
Conversions of poses:

A pose is a JSON object that includes position and orientation keys.

Basler AGManual: rc_visard 300 Rev: 24.01.1Status: Jan 29, 2024

7.5. KUKA Ethernet KRL Interface

{
"pose": {
"position": {
"x": "float64",
"y": "float64",
"z": "float64",

},
"orientation": {
"x": "float64",
"y": "float64",
"z": "float64",
"w": "float64",

}
}

}

This JSON object is converted to a KRL FRAME in the XML message.
<pose X="..." Y="..." Z="..." A="..." B="..." C="..."></pose>

Positions are converted from meters to millimeters and orientations are converted fromquaternions to KUKA ABC (in degrees).
Note: No other unit conversions are included in the EKI Bridge. All dimensions and 3Dcoordinates that don’t belong to a pose are expected and returned in meters.

Arrays:
Arrays are identified by adding the child element <le> (short for list element) to the list name.As an example, the JSON object

{
"rectangles": [
{
"x": "float64",
"y": "float64"

}
]

}

is converted to the XML fragment
<rectangles>

<le>
<x>...</x>
<y>...</y>

</le>
</rectangles>

Use of XML attributes:
All JSON keys whose values are a primitive data type and don’t belong to an array are storedin attributes. As an example, the JSON object

{
"item": {
"uuid": "string",
"confidence": "float64",
"rectangle": {
"x": "float64",
"y": "float64"

(continues on next page)

Basler AGManual: rc_visard 301 Rev: 24.01.1Status: Jan 29, 2024

7.5. KUKA Ethernet KRL Interface

(continued from previous page)
}

}
}

is converted to the XML fragment
<item uuid="..." confidence="...">

<rectangle x="..." y="...">
</rectangle>

</item>

7.5.3.1 Request XML structure

The <SEND> element in the XML configuration file for a generic service follows the specification below.
<SEND>

<XML>
<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/service/<service_name>" Type="STRING"/>
<ELEMENT Tag="req/args/<argX>" Type="<argX_type>"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <service> element includes a child XML element that is used by the EKI Bridge to identify the targetservice from the XML telegram. The service name is already included in the configuration file.
The <args> element includes the service arguments and should be configured with EKI_Set<Type> KRLinstructions.
As an example, the <SEND> element of the rc_load_carrier_db’s get_load_carriers service (see Load-
CarrierDB, Section 6.5.1) is:

<SEND>
<XML>

<ELEMENT Tag="req/node/rc_load_carrier_db" Type="STRING"/>
<ELEMENT Tag="req/service/get_load_carriers" Type="STRING"/>
<ELEMENT Tag="req/args/load_carrier_ids/le" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>

The <end_of_request> element allows to have arrays in the request. For configuring an array, the requestis split into as many packages as the size of the array. The last telegram contains all tags, including the
<end_of_request> flag, while all other telegrams contain one array element each.
As an example, for requesting two load carrier models to the rc_load_carrier_db’s get_load_carriersservice, the user needs to send two XML messages. The first XML telegram is:

<req>
<args>

<load_carrier_ids>
<le>load_carrier1</le>

</load_carrier_ids>
</args>

</req>

This telegram can be sent from KRL with the EKI_Send command, by specifying the list element as path:

Basler AGManual: rc_visard 302 Rev: 24.01.1Status: Jan 29, 2024

7.5. KUKA Ethernet KRL Interface

DECL EKI_STATUS RET
RET = EKI_SetString("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/
→˓le", "load_carrier1")
RET = EKI_Send("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/le")

The second telegram includes all tags and triggers the request to the rc_load_carrier_db node:
<req>

<node>
<rc_load_carrier_db></rc_load_carrier_db>

</node>
<service>

<get_load_carriers></get_load_carriers>
</service>
<args>

<load_carrier_ids>
<le>load_carrier2</le>

</load_carrier_ids>
</args>
<end_of_request></end_of_request>

</req>

This telegram can be sent from KRL by specifying req as path for EKI_Send:
DECL EKI_STATUS RET
RET = EKI_SetString("rc_load_carrier_db-get_load_carriers", "req/args/load_carrier_ids/
→˓le", "load_carrier2")
RET = EKI_Send("rc_load_carrier_db-get_load_carriers", "req")

7.5.3.2 Response XML structure

The <RECEIVE> element in theXMLconfiguration file for a generic service follows the specification below:
<RECEIVE>

<XML>
<ELEMENT Tag="res/<resX>" Type="<resX_type>"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

As an example, the <RECEIVE> element of the rc_april_tag_detect’s detect service (see TagDetect,Section 6.3.2) is:
<RECEIVE>

<XML>
<ELEMENT Tag="res/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose_frame" Type="STRING"/>
<ELEMENT Tag="res/tags/le/timestamp/@sec" Type="INT"/>
<ELEMENT Tag="res/tags/le/timestamp/@nsec" Type="INT"/>
<ELEMENT Tag="res/tags/le/pose/@X" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Y" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@Z" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@A" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@B" Type="REAL"/>
<ELEMENT Tag="res/tags/le/pose/@C" Type="REAL"/>

(continues on next page)

Basler AGManual: rc_visard 303 Rev: 24.01.1Status: Jan 29, 2024

7.5. KUKA Ethernet KRL Interface

(continued from previous page)
<ELEMENT Tag="res/tags/le/instance_id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/id" Type="STRING"/>
<ELEMENT Tag="res/tags/le/size" Type="REAL"/>
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

For arrays, the response includes multiple instances of the same XML element. Each element is writteninto a separate buffer within EKI and can be read from the buffer with KRL instructions. The numberof instances can be requested with EKI_CheckBuffer and each instance can then be read by calling
EKI_Get<Type>.
As an example, the tag poses received after a call to the rc_april_tag_detect’s detect service can beread in KRL using the following code:

DECL EKI_STATUS RET
DECL INT i
DECL INT num_instances
DECL FRAME poses[32]

DECL FRAME pose = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

RET = EKI_CheckBuffer("rc_april_tag_detect-detect", "res/tags/le/pose")
num_instances = RET.Buff
for i=1 to num_instances

RET = EKI_GetFrame("rc_april_tag_detect-detect", "res/tags/le/pose", pose)
poses[i] = pose

endfor
RET = EKI_ClearBuffer("rc_april_tag_detect-detect", "res")

Note: Before each request from EKI to the rc_visard, all buffers should be cleared in order to storeonly the current response in the EKI buffers.

7.5.4 Parameters

All nodes’ parameters can be set and queried from the EKI Bridge. The XML configuration file for ageneric node follows the specification below:
<SEND>

<XML>
<ELEMENT Tag="req/node/<node_name>" Type="STRING"/>
<ELEMENT Tag="req/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="req/parameters/<parameter_y>/@value" Type="STRING"/>
<ELEMENT Tag="req/end_of_request" Type="BOOL"/>

</XML>
</SEND>
<RECEIVE>

<XML>
<ELEMENT Tag="res/parameters/<parameter_x>/@value" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@default" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@min" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_x>/@max" Type="INT"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@value" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@default" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@min" Type="REAL"/>
<ELEMENT Tag="res/parameters/<parameter_y>/@max" Type="REAL"/>
<ELEMENT Tag="res/return_code/@value" Type="INT"/>
<ELEMENT Tag="res/return_code/@message" Type="STRING"/>

(continues on next page)

Basler AGManual: rc_visard 304 Rev: 24.01.1Status: Jan 29, 2024

7.5. KUKA Ethernet KRL Interface

(continued from previous page)
<ELEMENT Tag="res" Set_Flag="998"/>

</XML>
</RECEIVE>

The request is interpreted as a get request if all parameter’s value attributes are empty. If any valueattribute is non-empty, it is interpreted as set request of the non-empty parameters.
As an example, the current value of all parameters of rc_stereomatching can be queried using the XMLtelegram:

<req>
<node>

<rc_stereomatching></rc_stereomatching>
</node>
<parameters></parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:
DECL EKI_STATUS RET
RET = EKI_Send("rc_stereomatching-parameters", "req")

The response from the EKI Bridge contains all parameters:
<res>

<parameters>
<acquisition_mode default="Continuous" max="" min="" value="Continuous"/>
<quality default="High" max="" min="" value="High"/>
<static_scene default="0" max="1" min="0" value="0"/>
<seg default="200" max="4000" min="0" value="200"/>
<smooth default="1" max="1" min="0" value="1"/>
<fill default="3" max="4" min="0" value="3"/>
<minconf default="0.5" max="1.0" min="0.5" value="0.5"/>
<mindepth default="0.1" max="100.0" min="0.1" value="0.1"/>
<maxdepth default="100.0" max="100.0" min="0.1" value="100.0"/>
<maxdeptherr default="100.0" max="100.0" min="0.01" value="100.0"/>

</parameters>
<return_code message="" value="0"/>

</res>

The quality parameter of rc_stereomatching can be set to Low by the XML telegram:
<req>

<node>
<rc_stereomatching></rc_stereomatching>

</node>
<parameters>

<quality value="Low"></quality>
</parameters>
<end_of_request></end_of_request>

</req>

This XML telegram can be sent out with Ethernet KRL using:
DECL EKI_STATUS RET
RET = EKI_SetString("rc_stereomatching-parameters", "req/parameters/quality/@value",
→˓"Low")
RET = EKI_Send("rc_stereomatching-parameters", "req")

In this case, only the applied value of quality is returned by the EKI Bridge:

Basler AGManual: rc_visard 305 Rev: 24.01.1Status: Jan 29, 2024

7.6. gRPC image stream interface

<res>
<parameters>

<quality default="High" max="" min="" value="Low"/>
</parameters>
<return_code message="" value="0"/>

</res>

7.5.5 Migration to firmware version 22.01

From firmware version 22.01 on the EKI Bridge reflects rc_visard’s REST-API v2 (Section 7.3).
This requires the following changes:

• Configuring load carriers, grippers and regions of interest is now only accessible in the globaldatabase modules:
– Use the rc_load_carrier_db XML files for getting, setting and deleting of load carriers.
– Use the rc_gripper_db XML files for getting, setting and deleting of grippers.
– Use the rc_roi_db XML files for getting, setting and deleting of regions of interest.

• Load carrier detection and filling level detection is now only accessible via the rc_load_carriernode.
– Use the rc_load_carrier XML files for detect_load_carriers and detect_filling_levelservices.

7.5.6 Troubleshooting

SmartPad error message: Limit of element memory reached

This error may occur if the number of matches exceeds the memory limit.
• Increase BUFFERING and set BUFFSIZE in EKI config files. Adapt these settings to your particularKRC.
• Decrease the ‘Maximum Matches’ parameter in the detection module
• Even if the total memory limit (BUFFSIZE) of a message is not reached, the KRC might not be ableto parse the number of child elements in the XML tree if the BUFFERING limit is too small. Forexample, if your application proposes 50 different grasps, the BUFFERING limit needs to be 50too.

7.6 gRPC image stream interface

The gRPC image streaming interface can be used as an alternative to theGigE Vision / GenICam interface(Section 7.2) for getting camera images and synchronized sets of images (e.g. left camera image andcorresponding disparity image). gRPC is a remote procedure call system that also supports streaming.It uses Protocol Buffers (see https://developers.google.com/protocol-buffers/) as interface descriptionlanguage and data serialization. For a gRPC introduction andmore details please see the official website(https://grpc.io/).
The advantages of the gRPC interface in comparison to GigE Vision are:

• It is simpler to use in own programs than GigE Vision.
• There is gRPC support for a lot of programming languages (see https://grpc.io/).
• The communication is based on TCP instead of UDP and therefore it also works over less stablenetworks, e.g. WLAN.

Basler AGManual: rc_visard 306 Rev: 24.01.1Status: Jan 29, 2024

https://grpc.io/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://grpc.io/
https://grpc.io/

7.6. gRPC image stream interface

The disadvantages of the gRPC interface in comparison to GigE Vision are:
• It does not support changing parameters, but the REST-API interface (Section 7.3) can be used forchanging parameters.
• It is not a standard vision interface like GigE Vision.

The rc_visard provides synchronized image sets via gRPC server side streams on port 50051.
The communication is started by sending an ImageSetRequest message to the server. The messagecontains the information about requested images, i.e. left, right, disparity, confidence and disparity_errorimages can be enabled separately.
After getting the request, the server starts continuously sending ImageSet messages that contain allrequested images with all parameters necessary for interpreting the images. The images that are con-tained in an ImageSet message are synchronized, i.e. they are all captured at the same time. The onlyexception to this rule is if the out1_mode (Section 6.4.4.1) is set to AlternateExposureActive. In thiscase, the camera and disparity images are taken 40 ms apart, so that the GPIO Out1 is LOW when theleft and right images are taken, and HIGH for the disparity, confidence and error images. This mode isuseful when a random dot projector is used, because the projector would be off for capturing the leftand right image, and on for the disparity image, which results in undisturbed camera images and amuchdenser and more accurate disparity image.
Streaming of images is done until the client closes the connection.

7.6.1 gRPC service definition

syntax = "proto3";

message Time
{

int32 sec = 1; ///< Seconds
int32 nsec = 2; ///< Nanoseconds

}

message Gpios
{

uint32 inputs = 1; ///< bitmask of available inputs
uint32 outputs = 2; ///< bitmask of available outputs
uint32 values = 3; ///< bitmask of GPIO values

}

message Image
{

Time timestamp = 1; ///< Acquisition timestamp of the image
uint32 height = 2; ///< image height (number of rows)
uint32 width = 3; ///< image width (number of columns)
float focal_length = 4; ///< focal length in pixels
float principal_point_u = 5; ///< horizontal position of the principal point
float principal_point_v = 6; ///< vertical position of the principal point
string encoding = 7; ///< Encoding of pixels ["mono8", "mono16", "rgb8"]
bool is_bigendian = 8; ///< is data bigendian, (in our case false)
uint32 step = 9; ///< full row length in bytes
bytes data = 10; ///< actual matrix data, size is (step * height)
Gpios gpios = 11; ///< GPIOs as of acquisition timestamp
float exposure_time = 12; ///< exposure time in seconds
float gain = 13; ///< gain factor in decibel
float noise = 14; ///< noise
float out1_reduction = 16; ///< Fraction of reduction (0.0 - 1.0) of exposure time for

→˓images with GPIO Out1=Low in exp_auto_mode=AdaptiveOut1
float brightness = 17; ///< Current brightness of the image as value between 0 and 1

}

(continues on next page)

Basler AGManual: rc_visard 307 Rev: 24.01.1Status: Jan 29, 2024

7.6. gRPC image stream interface

(continued from previous page)
message DisparityImage
{

Time timestamp = 1; ///< Acquisition timestamp of the image
float scale = 2; ///< scale factor
float offset = 3; ///< offset in pixels (in our case 0)
float invalid_data_value = 4; ///< value used to mark pixels as invalid (in our case 0)
float baseline = 5; ///< baseline in meters
float delta_d = 6; ///< Smallest allowed disparity increment. The smallest

→˓achievable depth range resolution is delta_Z = (Z^2/image.focal_length*baseline)*delta_d.
Image image = 7; ///< disparity image

}

message Mesh
{

Time timestamp = 1; ///< Acquisition timestamp of disparity image from which the mesh
→˓is computed
string format = 2; ///< currently only "ply" is supported
bytes data = 3; ///< actual mesh data

}

message ImageSet
{

Time timestamp = 1;
Image left = 2;
Image right = 3;
DisparityImage disparity = 4;
Image disparity_error = 5;
Image confidence = 6;
Mesh mesh = 7;

}

message MeshOptions
{

uint32 max_points = 1; ///< limit maximum number of points, zero means default (up
→˓to 3.1MP), minimum is 1000
enum BinningMethod {

AVERAGE = 0; ///< average over all points in bin
MIN_DEPTH = 1; ///< use point with minimum depth (i.e. closest to camera) in

→˓bin
}
BinningMethod binning_method = 2; ///< method used for binning if limited by max_points
bool watertight = 3; ///< connect all edges and fill all holes, e.g. for collision

→˓checking
bool textured = 4; ///< add texture information to mesh

}

message ImageSetRequest
{

bool left_enabled = 1;
bool right_enabled = 2;
bool disparity_enabled = 3;
bool disparity_error_enabled = 4;
bool confidence_enabled = 5;
bool mesh_enabled = 6;
MeshOptions mesh_options = 7;
bool color = 8; ///< send left/right image as color (rgb8) images

}

service ImageInterface
{

(continues on next page)

Basler AGManual: rc_visard 308 Rev: 24.01.1Status: Jan 29, 2024

7.7. OPC UA interface

(continued from previous page)
// A server-to-client streaming RPC.
rpc StreamImageSets(ImageSetRequest) returns (stream ImageSet) {}

}

7.6.2 Image stream conversions

The conversion of disparity images into a point cloud can be done as described in the GigE Vision /
GenICam interface (Section 7.2.7).

7.7 OPC UA interface

The rc_visard also offers an optional OPC UA interface. The OPC UA server can be activated via licenseupdate.
The OPC UA server uses the DataTypeDefinition attribute (available in OPC UA version 1.04) for cus-tom datatypes and also uses methods and variable length arrays. Please check if your OPC UA clientsupports this.

7.8 Time synchronization

The rc_visard provides timestamps with all images and messages. To compare these with the time onthe application host, the time needs to be properly synchronized.
This can be done either via the Network Time Protocol (NTP), which is the default, or thePrecision Time Protocol (PTP).

Note: The rc_visard does not have a backup battery for its real time clock and hence does not retaintime across power cycles. The system time starts at the last saved time (saved on reboot and onceevery hour) at power up and is then automatically set via NTP if a server can be found.
The current system time as well as time synchronization status can be queried via REST-API (Section7.3) and seen on the Web GUI’s (Section 7.1) System page.
Note: Depending on the reachability ofNTPservers or PTPmasters itmight take up to severalminutesuntil the time is synchronized.

7.8.1 NTP

The Network Time Protocol (NTP) is a TCP/IP protocol for synchronizing time over a network. A clientperiodically requests the current time from a server, and uses it to set and correct its own clock.
By default the rc_visard tries to reach NTP servers from the NTP Pool Project, which will work if the
rc_visard has access to the internet.
If the rc_visard is configured for DHCP (Section 4.4.2) (which is the default setting), it will also requestNTP servers from the DHCP server and try to use those.

7.8.2 PTP

The Precision Time Protocol (PTP, also known as IEEE1588) is a protocol which offers more precise androbust clock synchronization than with NTP.

Basler AGManual: rc_visard 309 Rev: 24.01.1Status: Jan 29, 2024

7.8. Time synchronization

The rc_visard can be configured to act as a PTP slave via the standard GigE Vision 2.0/GenICam inter-
face (Section 7.2) using the GevIEEE1588 parameter.
At least one PTP master providing time has to be running in the network. On Linux the respective com-mand for starting a PTP master on ethernet port eth0 is, e.g., sudo ptpd --masteronly --foreground
-i eth0.
While the rc_visard is synchronized with a PTP master (rc_visard in PTP status SLAVE), the NTP syn-chronization is paused.

7.8.3 Setting time manually

The rc_visard allows to set the current date and time manually using the REST-API’s /system/time end-point, if no time synchronization is active (see System and logs, Section 7.3.3.3). A more convenient wayis setting the system time on the Web GUI’s (Section 7.1) System page.

Basler AGManual: rc_visard 310 Rev: 24.01.1Status: Jan 29, 2024

8 Maintenance

Warning: The customer does not need to open the rc_visard’s housing to perform maintenance.Unauthorized opening will void the warranty.

8.1 Lens cleaning

Glass lenses with antireflective coating are used to reduce glare. Please take special care when clean-ing the lenses. To clean them, use a soft lens-cleaning brush to remove dust or dirt particles. Then usea clean microfiber cloth that is designed to clean lenses, and gently wipe the lens using a circular mo-tion to avoid scratches that may compromise the sensor’s performance. For stubborn dirt, high purityisopropanol or a lens cleaning solution formulated for coated lenses (such as the Uvex Clear family ofproducts) may be used.

8.2 Camera calibration

The cameras are calibrated during production. Under normal operating conditions, the calibration willbe valid for the life time of the sensor. High impact, such as occurring when dropping the rc_visard,can change the camera’s parameters slightly. In this case, calibration can be verified and recalibrationundertaken via the Web GUI (see Camera calibration, Section 6.4.3).

8.3 Creating and restoring backups of settings

The rc_visard offers the possibility to download the current settings as backup or for transferring themto a different rc_visard or rc_cube.
The current settings of the rc_visard can be downloaded on the Web GUI’s (Section 7.1) System pagein the rc_visard Settings section. They can also be downloaded via the rc_visard’s REST-API inter-
face (Section 7.3) using the GET /system/backup request.
For downloading a backup, the user can choose which settings to include:

• nodes: the settings of all modules (parameters, preferred orientations and sorting strategies)
• load_carriers: the configured load carriers
• regions_of_interest: the configured 2D and 3D regions of interest
• grippers: the configured grippers (without the CAD elements)

The returned backup should be stored as a .json file.
The templates of the SilhouetteMatch module are not included in the backup but can be downloadedmanually using the REST-API or the Web GUI (see Template API, Section 6.3.4.14).

Basler AGManual: rc_visard 311 Rev: 24.01.1Status: Jan 29, 2024

8.4. Updating the firmware

A backup can be restored to the rc_visard on the Web GUI’s (Section 7.1) System page in the rc_visard
Settings section by uploading the backup .json file. In the Web GUI the settings included in the backupare shown and can be chosen for restore. The corresponding REST-API interface (Section 7.3) call is
POST /system/backup.
Warning: When restoring load carriers, all existing load carriers on the rc_visard will get lost andwill be replaced by the content of the backup. The same applies to restoring grippers and regions ofinterest.

When restoring a backup, only the settingswhich are applicable to the rc_visard are restored. Parametersfor modules that do not exist on the device or do not have a valid license will be skipped. If a backupcan only be restored partially, the user will be notified by warnings.

8.4 Updating the firmware

Information about the current firmware image version can be found on the Web GUI’s (Section 7.1) Sys-
tem → Firmware & License page. It can also be accessed via the rc_visard’s REST-API interface (Section7.3) using the GET /system request. Users can use either the Web GUI or the REST-API to update thefirmware.
Warning: When upgrading from a version prior to 21.07, all of the software modules’ configured pa-rameters will be reset to their defaults after a firmware update. Only when upgrading from version21.07 or higher, the last saved parameters will be preserved. Pleasemake sure these settings are per-sisted on the application-side or client PC (e.g., using the REST-API interface, Section 7.3) to requestall parameters and store them prior to executing the update.
The following settings are excluded from this and will be persisted across a firmware update:

• the rc_visard’s network configuration including an optional static IP address and the user-specified device name,
• the latest result of the Hand-eye calibration (Section 6.4.1), i.e., recalibrating the rc_visard w.r.t.a robot is not required, unless camera mounting has changed, and
• the latest result of the Camera calibration (Section 6.4.3), i.e., recalibration of the rc_visard’sstereo cameras is not required.

Step 1: Download the newest firmware version. Firmware updates will be supplied from of a Menderartifact file identified by its .mender suffix.
Step 2: Upload the update file. To update with the rc_visard’s REST-API, users may refer to the POST /

system/update request.
To update the firmware via the Web GUI, locate the System → Firmware & License page and pressthe “Upload rc_visard Update” button. Select the desired update image file (file extension .mender)from the local file system and open it to start the update.
Depending on the network architecture and configuration, the upload may take several minutes.During the update via the Web GUI, a progress bar indicates the progress of the upload.
Note: Depending on the web browser, the update progress status shown in the progress barmay indicate the completion of the update too early. Please wait until a notification windowopens, which indicates the end of the update process. Expect an overall update time of at leastfive minutes.

Basler AGManual: rc_visard 312 Rev: 24.01.1Status: Jan 29, 2024

8.5. Restoring the previous firmware version

Warning: Do not close the web browser tab which contains the Web GUI or press the renewbutton on this tab, because it will abort the update procedure. In that case, repeat the updateprocedure from the beginning.
Step 3: Reboot the rc_visard. To apply a firmware update to the rc_visard device, a reboot is requiredafter having uploaded the new image version.

Note: The new image version is uploaded to the inactive partition of the rc_visard. Only afterrebooting will the inactive partition be activated, and the active partition will become inactive.If the updated firmware image cannot be loaded, this partition of the rc_visard remains inactiveand the previously installed firmware version from the active partition will be used automati-cally.
As for the REST-API, the reboot can be performed by the PUT /system/reboot request.
After having uploaded the new firmware via the Web GUI, a notification window is opened, whichoffers to reboot the device immediately or to postpone the reboot. To reboot the rc_visard at alater time, use the Reboot button on the Web GUI’s System page.

Step 4: Confirm the firmware update. After rebooting the rc_visard, please check the firmware imageversion number of the currently active image to make sure that the updated image was success-fully loaded. You can do so either via the Web GUI’s System → Firmware & License page or via theREST-API’s GET /system/update request.
Please contact Basler in case the firmware update could not be applied successfully.

8.5 Restoring the previous firmware version

After a successful firmware update, the previous firmware image is stored on the inactive partition ofthe rc_visard and can be restored in case needed. This procedure is called a rollback.
Note: Using the latest firmware as provided by Basler is strongly recommended. Hence, rollbackfunctionality should only be used in case of serious issues with the updated firmware version.

Rollback functionality is only accessible via the rc_visard’s REST-API interface (Section 7.3) using the PUT
/system/rollback request. It can be issued using any HTTP-compatible client or using a web browseras described in Swagger UI (Section 7.3.5). Like the update process, the rollback requires a subsequentdevice reboot to activate the restored firmware version.

8.6 Rebooting the rc_visard

An rc_visard reboot is necessary after updating the firmware or performing a software rollback. It canbe issued either programmatically, via the rc_visard’s REST-API interface (Section 7.3) using the PUT /
system/reboot request, or manually on the Web GUI’s (Section 7.1) System page.
The reboot is finished when the LED turns green again.

8.7 Updating the software license

Licenses that are purchased from Basler for enabling additional features can be installed via the Web
GUI’s (Section 7.1) System → Firmware & License page. The rc_visard has to be rebooted to apply thelicenses.

Basler AGManual: rc_visard 313 Rev: 24.01.1Status: Jan 29, 2024

8.8. Downloading log files

8.8 Downloading log files

During operation, the rc_visard logs important information, warnings, and errors into files. If the rc_visardexhibits unexpected or erroneous behavior, the log files can be used to trace its origin. Log messagescan be viewed and filtered using the Web GUI’s (Section 7.1) System → Logs page. If contacting thesupport (Contact, Section 11), the log files are very useful for tracking possible problems. To downloadthem as a .tar.gz file, click on Download all logs on the Web GUI’s System → Logs page.
Aside from the Web GUI, the logs are also accessible via the rc_visard’s REST-API interface (Section 7.3)using the GET /logs and GET /logs/{log} requests.

Basler AGManual: rc_visard 314 Rev: 24.01.1Status: Jan 29, 2024

9 Accessories

9.1 Connectivity kit

Basler offers an optional connectivity kit to aid customers with setting up the rc_visard. For permanentinstallation, the customer is responsible for providing a suitable power supply. The connectivity kit con-sists of a:
• network cable with straight M12 plug to straight RJ45 connector in either 2 m, 5 m, or 10 m length,
• power adapter cable with straight M12 socket to DC barrel connector in 30 cm length,
• 24 V, 30 W wall power supply, or a 24 V, 60 W desktop power supply.

Connecting the rc_visard to residential or office grid power requires a power supply that meets EN 55011Class B emission standards. The E2CFS 30W 24V by EGSTON System Electronics Eggenburg GmbH(http://www.egston.com) contained in the connectivity kit is certified accordingly. However, it does notmeet immunity standards for industrial environments under EN 61000-6-2.

Power supply
24V 1.25A

M12 to RJ45 cable

DC barrel to
M12 adapter

Fig. 9.1: The optional connectivity kit’s components

9.2 Wiring

Cables are by default not provided with the rc_visard. It is the customer’s responsibility to obtain appro-priate parts. The following sections provide an overview of suggested components.

9.2.1 Ethernet connections

The rc_visard provides an industrial 8-pin A-coded M12 socket connector for Ethernet connectivity. Var-ious cabling solutions can be obtained directly from third party vendors.
CAT5 (1 Gbps) M12 plug to RJ45

Basler AGManual: rc_visard 315 Rev: 24.01.1Status: Jan 29, 2024

http://www.egston.com

9.3. Spare parts

• Straight M12 plug to straight RJ45 connector, 10 m length: Phoenix Contact NBC-MS/ 10,0-94B/R4AC SCO, Art.-Nr.: 1407417
• Straight M12 plug to straight RJ45 connector, 10 m length: MURR Electronics Art.-Nr.: 7700-48521-S4W1000
• Angled M12 plug to straight RJ45 connector, 10 m length: MURR Electronics Art.-Nr.: 7700-48551-S4W1000

9.2.2 Power connections

An 8-pin A-coded M12 plug connector is provided for power and GPIO connectivity. Various cablingsolutions can be obtained from third party vendors. A selection of M12 to open ended cables is providedbelow. Customers are required to provide power and GPIO connections to the cables according to thepinouts described in Wiring (Section 3.5). The rc_visard’s housing must be connected to ground.
Sensor/Actor cable M12 socket to open end

• Straight M12 socket connector to open end, shielded, 10m length: Phoenix Contact SAC-8P-10,0-PUR/M12FS SH, Art.Nr.: 1522891
• Angled M12 socket connector to open end, shielded 10m length: Phoenix Contact SAC-8P-10,0-PUR/M12FR SH, Art.Nr.: 1522943

Sensor/Actor M12 socket for field termination

• Phoenix Contact SACC-M12FS-8CON-PG9-M, Art.Nr.:1513347
• TE Connectivity T4110011081-000 (metal housing)
• TE Connectivity T4110001081-000 (plastic housing)

9.2.3 Power supplies

The rc_visard is classified as an EN-55011 Class B device and immune to light industrial and industrial en-vironments. For connecting the sensor to residential grid power, a power supply under EN 55011/55022Class B has to be used.
It is the customer’s responsibility to obtain and install a suitable power supply satisfying EN 61000-6-2for permanent installation in industrial environments. One example that satisfies both EN 61000-6-2 andEN 55011/55022 Class B is the DIN-Rail mounted PULSMiniLineML60.241 24V/DC 2.5 A by PULS GmbH(http://www.pulspower.com). A certified electrician must perform installation.
Only one rc_visard shall be connected to a power supply at any time, and the total length of cables mustbe less than 30 m.

9.3 Spare parts

No user-serviceable spare parts are currently available for rc_visard devices.

Basler AGManual: rc_visard 316 Rev: 24.01.1Status: Jan 29, 2024

http://www.pulspower.com

10 Troubleshooting

10.1 LED colors

During the boot process, the LED will change color several times to indicate stages in the boot process:
Table 10.1: LED color codes

LED color Boot stagewhite power supply OKyellow normal boot process in progresspurplebluegreen boot complete, rc_visard ready
The LED will signal some warning or error states to support the user during troubleshooting.

Table 10.2: LED color trouble codes
LED color Warning or error stateoff no power to the sensorbrief red flash every 5 seconds no network connectivityredwhile sensor appears to function normally high-temperature warning (case has exceeded 60°C)red while case is below 60 °C Some process has terminated and failed to restart.

10.2 Hardware issues

LED does not illuminate

The rc_visard does not start up.
• Ensure that cables are connected and secured properly.
• Ensure that adequate DC voltage (18 V to 30 V) with correct polarity is applied to the power connec-tor at the pins labeled as Power and Ground as described in the device’s pin assignment specifica-
tion (Section 3.6). Connecting the sensor to voltage outside of the specified range, to alternatingcurrent, with reversed polarity, or to a supply with voltage spikes will lead to permanent hardwaredamage.

LED turns red while the sensor appears to function normally

Thismay indicate a high housing temperature. The sensormight bemounted in a position that obstructsfree airflow around the cooling fins.
• Clean cooling fins and housing.
• Ensure a minimum of 10 cm free space in all directions around cooling fins to provide adequateconvective cooling.

Basler AGManual: rc_visard 317 Rev: 24.01.1Status: Jan 29, 2024

10.3. Connectivity issues

• Ensure that ambient temperature is within specified range.
The sensor may slow down processing when cooling is insufficient or the ambient temperature exceedsthe specified range.
Reliability issues and/or mechanical damage

This may be an indication of ambient conditions (vibration, shock, resonance, and temperature) beingoutside of specified range. Please refer to the specification of environmental conditions (Section 3.4).
• Operating the rc_visard outside of specified ambient conditionsmight lead to damage andwill voidthe warranty.

Electrical shock when touching the sensor

This indicates an electrical fault in sensor, cabling, or power supply or adjacent system.
• Immediately turn off power to the system, disconnect cables, and have a qualified electrician checkthe setup.
• Ensure that the sensor housing is properly grounded; check for large ground loops.

10.3 Connectivity issues

LED briefly flashes red every 5 seconds

If the LED briefly flashes red every 5 seconds, then the rc_visard is not able to detect a network link.
• Check that the network cable is properly connected to the rc_visard and the network.
• If no problem is visible, then replace the Ethernet cable.

A GigE Vision client or rcdiscover-gui cannot detect the camera

• Check whether the rc_visard’s LED flashes briefly every 5 seconds (check the cable if it does).
• Ensure that the rc_visard is connected to the same subnet (the discovery mechanism uses broad-casts that will not work across different subnets).

The Web GUI is inaccessible

• Ensure that the rc_visard is turned on and connected to the same subnet as the host computer.
• Check whether the rc_visard’s LED flashes briefly every 5 seconds (check the cable if it does).
• Check whether rcdiscover-gui detects the sensor. If it reports the rc_visard as unreachable, thenthe rc_visard’s network configuration (Section 4.4) is wrong.
• If the rc_visard is reported as reachable, try double clicking the entry to open the Web GUI in abrowser.
• If this does not work, try entering the rc_visard’s reported IP address directly in the browser astarget address.

Too many Web GUIs are open at the same time

TheWeb GUI consumes the rc_visard’s processing resources to compress images to be transmitted andfor statistical output that is regularly polled by the browser. Leaving several instances of the Web GUIopen on the same or different computers can significantly diminish the rc_visard’s performance. TheWeb GUI is meant for configuration and validation, not to permanently monitor the rc_visard.

10.4 Camera-image issues

The camera image is too bright

Basler AGManual: rc_visard 318 Rev: 24.01.1Status: Jan 29, 2024

10.5. Depth/Disparity, error, and confidence image issues

• If the camera is in manual exposure mode, decrease the exposure time (see Parameters, Section6.1.1.3), or
• switch to auto-exposure mode (see Parameters, Section 6.1.1.3).

The camera image is too dark

• If the camera is in manual exposure mode, increase the exposure time (see Parameters, Section6.1.1.3), or
• switch to auto-exposure mode (see Parameters, Section 6.1.1.3).

The camera image is too noisy

Large gain factors cause high-amplitude image noise. To decrease the image noise,
• use an additional light source to increase the scene’s light intensity, or
• choose a greater maximal auto-exposure time (see Parameters, Section 6.1.1.3).

The camera image is out of focus

• Check whether the object is too close to the lens and increase the distance between the objectand the lens if it is.
• Check whether the camera lenses are dirty and clean them if they are.
• If none of the above applies, a severe hardware problem might exist. Please contact sup-
port (Section 11).

The camera image is blurred

Fast motions in combination with long exposure times can cause blur. To reduce motion blur,
• decrease the motion speed of the camera,
• decrease the motion speed of objects in the field of view of the camera, or
• decrease the exposure time of the camera (see Parameters, Section 6.1.1.3).

The camera image is fuzzy

• Check whether the lenses are dirty and clean them if so (see Lens cleaning, Section 8.1).
• If none of the above applies, a severe hardware problem might exist. Please contact sup-
port (Section 11).

The camera image frame rate is too low

• Increase the image frame rate as described in Parameters (Section 6.1.1.3).
• The maximal frame rate of the cameras is 25 Hz.

10.5 Depth/Disparity, error, and confidence image issues

All these guidelines also apply to error and confidence images, because they correspond directly to thedisparity image.
The disparity image is too sparse or empty

• Check whether the camera images are well exposed and sharp. Follow the instructions in Camera-
image issues (Section 10.4) if applicable.

• Check whether the scene has enough texture (see Stereo matching, Section 6.1.2) and install anexternal pattern projector if required.
• Decrease the Minimum Distance (Section 6.1.2.5).
• Increase the Maximum Distance (Section 6.1.2.5).

Basler AGManual: rc_visard 319 Rev: 24.01.1Status: Jan 29, 2024

10.6. Dynamics issues

• Check whether the object is too close to the cameras. Consider the different depth ranges of thecamera variants.
• Decrease the Minimum Confidence (Section 6.1.2.5).
• Increase the Maximum Depth Error (Section 6.1.2.5).
• Choose a lesser Disparity Image Quality (Section 6.1.2.5). Lower resolution disparity images aregenerally less sparse.
• Check the cameras’ calibration and recalibrate if required (see Camera calibration, Section 6.4.3).

The disparity images’ frame rate is too low

• Check and increase the frame rate of the camera images (see Parameters, Section 6.1.1.3). Theframe rate of the disparity image cannot be greater than the frame rate of the camera images.
• Choose a lesser Disparity Image Quality (Section 6.1.2.5).
• Increase the Minimum Distance (Section 6.1.2.5) as much as possible for the application.

The disparity image does not show close objects

• Check whether the object is too close to the cameras. Consider the depth ranges of the cameravariants.
• Decrease the Minimum Distance (Section 6.1.2.5).

The disparity image does not show distant objects

• Increase the Maximum Distance (Section 6.1.2.5).
• Increase the Maximum Depth Error (Section 6.1.2.5).
• Decrease the Minimum Confidence (Section 6.1.2.5).

The disparity image is too noisy

• Increase the Segmentation value (Section 6.1.2.5).
• Increase the Fill-In value (Section 6.1.2.5).

The disparity values or the resulting depth values are too inaccurate

• Decrease the distance between the camera and the scene. Depth-measurement error growsquadratically with the distance from the cameras.
• Checkwhether the scene contains repetitive patterns and remove them if it does. They could causewrong disparity measurements.

The disparity image is too smooth

• Decrease the Fill-In value (Section 6.1.2.5).
The disparity image does not show small structures

• Decrease the Segmentation value (Section 6.1.2.5).
• Decrease the Fill-In value (Section 6.1.2.5).

10.6 Dynamics issues

State estimates are unavailable

• Check in theWebGUI that pose estimation has been switched on (seeParameters, Section 6.2.2.1).
• Check in the Web GUI that the update rate is about 200 Hz.
• Check the Logs in the Web GUI for errors.

The state estimates are too noisy

Basler AGManual: rc_visard 320 Rev: 24.01.1Status: Jan 29, 2024

10.7. GigE Vision/GenICam issues

• Adapt the parameters for visual odometry as described in Parameters (Section 6.2.2.1).
• Check whether the camera pose stream has enough accuracy.

Pose estimation has jumps

• Has the SLAMmodule been turned on? SLAM can cause jumpswhen reducing errors due to a loopclosure.
• Adapt the parameters for visual odometry as described in Parameters (Section 6.2.2.1).

Pose frequency is too low

• Use the real-time pose stream with a 200 Hz update rate. See Stereo INS (Section 6.2.3).
Delay/Latency of pose is too great

• Use the real-time pose stream. See Stereo INS (Section 6.2.3).

10.7 GigE Vision/GenICam issues

No images

• Check that the modules are enabled. See ComponentSelector and ComponentEnable in Important
GenICam parameters (Section 7.2.2).

Basler AGManual: rc_visard 321 Rev: 24.01.1Status: Jan 29, 2024

11 Contact

11.1 Support

For support issues, please see https://www.baslerweb.com/en/sales-support/support-contact/ or con-tact

Technical Support Team

Europe, Middle East, Africa
+49 4102 463 515
support.europe@baslerweb.com
The Americas
+1 610 280 0171
support.usa@baslerweb.com
Asia-Pacific
+65 6367 1355
support.asia@baslerweb.com

11.2 Downloads

Software SDKs, etc. can be downloaded from https://www.baslerweb.com/3d-software.

11.3 Address

Basler AG
An der Strusbek 60-62
22926 Ahrensburg
Germany
Web: http://www.baslerweb.com
Email: info@baslerweb.com
Phone: +49 4102 463 0

Basler AGManual: rc_visard 322 Rev: 24.01.1Status: Jan 29, 2024

https://www.baslerweb.com/en/sales-support/support-contact/
mailto:support.europe@baslerweb.com
mailto:support.usa@baslerweb.com
mailto:support.asia@baslerweb.com
https://www.baslerweb.com/3d-software
http://www.baslerweb.com
mailto:info@baslerweb.com

12 Appendix

12.1 Pose formats

A pose consists of a translation and rotation. The translation defines the shift along the 𝑥, 𝑦 and 𝑧 axes.The rotation can be defined in many different ways. The rc_visard uses quaternions to define rotationsand translations are given in meters. This is called the XYZ+quaternion format. This chapter explainsthe conversion between different common conventions and the XYZ+quaternion format.
It is quite common to define rotations in 3D by three angles that define rotations around the three co-ordinate axes. Unfortunately, there are many different ways to do that. The most common conventionsare Euler and Cardan angles (also called Tait-Bryan angles). In both conventions, the rotations can beapplied to the previously rotated axis (intrinsic rotation) or to the axis of a fixed coordinate system (ex-trinsic rotation).
We use 𝑥, 𝑦 and 𝑧 to denote the three coordinate axes. 𝑥′, 𝑦′ and 𝑧′ refer to the axes that have beenrotated one time. Similarly, 𝑥′′, 𝑦′′ and 𝑧′′ are the axes after two rotations.
In the (original) Euler angle convention, the first and the third axis are always the same. The rotationorder 𝑧-𝑥′-𝑧′′ means rotating around the 𝑧-axis, then around the already rotated 𝑥-axis and finally aroundthe (two times) rotated 𝑧-axis. In the Cardan angle convention, three different rotation axes are used,e.g. 𝑧-𝑦′-𝑥′′. Cardan angles are often also just called Euler angles.
For each intrinsic rotation order, there is an equivalent extrinsic rotation order, which is inverted, e.g. theintrinsic rotation order 𝑧-𝑦′-𝑥′′ is equivalent to the extrinsic rotation order 𝑥-𝑦-𝑧.
Rotations around the 𝑥, 𝑦 and 𝑧 axes can be defined by quaternions as

𝑟𝑥(𝛼) =

⎛⎜⎜⎝
sin 𝛼

2
0
0

cos 𝛼
2

⎞⎟⎟⎠ , 𝑟𝑦(𝛽) =

⎛⎜⎜⎝
0

sin 𝛽
2

0

cos 𝛽
2

⎞⎟⎟⎠ , 𝑟𝑧(𝛾) =

⎛⎜⎜⎝
0
0

sin 𝛾
2

cos 𝛾
2

⎞⎟⎟⎠ ,

or by rotation matrices as
𝑟𝑥(𝛼) =

⎛⎝ 1 0 0
0 cos𝛼 − sin𝛼
0 sin𝛼 cos𝛼

⎞⎠ ,

𝑟𝑦(𝛽) =

⎛⎝ cos𝛽 0 sin𝛽
0 1 0

− sin𝛽 0 cos𝛽

⎞⎠ ,

𝑟𝑧(𝛾) =

⎛⎝ cos 𝛾 − sin 𝛾 0
sin 𝛾 cos 𝛾 0
0 0 1

⎞⎠ .
The extrinsic rotation order 𝑥-𝑦-𝑧 can be computed bymultiplying the individual rotations in inverse order,i.e. 𝑟𝑧(𝛾)𝑟𝑦(𝛽)𝑟𝑥(𝛼).
Based on these definitions, the following sections explain the conversion between common conventionsand the XYZ+quaternion format.
Basler AGManual: rc_visard 323 Rev: 24.01.1Status: Jan 29, 2024

12.1. Pose formats

Note: Please be aware of units for positions and orientations. rc_visard devices always specify po-sitions in meters, while most robot manufacturers use millimeters or inches. Angles are typicallyspecified in degrees, but may sometimes also be given in radians.

12.1.1 Rotation matrix and translation vector

A pose can also be defined by a rotation matrix 𝑅 and a translation vector 𝑇 .
𝑅 =

⎛⎝ 𝑟00 𝑟01 𝑟02
𝑟10 𝑟11 𝑟12
𝑟20 𝑟21 𝑟22

⎞⎠ , 𝑇 =

⎛⎝ 𝑋
𝑌
𝑍

⎞⎠ .

The pose transformation can be applied to a point 𝑃 by
𝑃 ′ = 𝑅𝑃 + 𝑇.

12.1.1.1 Conversion from rotation matrix to quaternion

The conversion from a rotation matrix (with 𝑑𝑒𝑡(𝑅) = 1) to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can bedone as follows.
𝑥 = sign(𝑟21 − 𝑟12)

1

2

√︀max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑤 =
1

2

√︀max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

The sign operator returns -1 if the argument is negative. Otherwise, 1 is returned. It is used to recoverthe sign for the square root. The max function ensures that the argument of the square root function isnot negative, which can happen in practice due to round-off errors.
12.1.1.2 Conversion from quaternion to rotation matrix

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)with ||𝑞|| = 1 to a rotation matrix can be done asfollows.
𝑅 = 2

⎛⎝ 1
2 − 𝑦2 − 𝑧2 𝑥𝑦 − 𝑧𝑤 𝑥𝑧 + 𝑦𝑤
𝑥𝑦 + 𝑧𝑤 1

2 − 𝑥2 − 𝑧2 𝑦𝑧 − 𝑥𝑤
𝑥𝑧 − 𝑦𝑤 𝑦𝑧 + 𝑥𝑤 1

2 − 𝑥2 − 𝑦2

⎞⎠

12.1.2 ABB pose format

ABB robots use a position and a quaternion for describing a pose, like rc_visard devices. There is noconversion of the orientation needed.

12.1.3 FANUC XYZ-WPR format

The pose format that is used by FANUC robots consists of a position 𝑋𝑌 𝑍 in millimeters and an orien-tation 𝑊𝑃𝑅 that is given by three angles in degrees, with 𝑊 rotating around 𝑥-axis, 𝑃 rotating around
𝑦-axis and 𝑅 rotating around 𝑧-axis. The rotation order is 𝑥-𝑦-𝑧 and computed by 𝑟𝑧(𝑅)𝑟𝑦(𝑃)𝑟𝑥(𝑊).

Basler AGManual: rc_visard 324 Rev: 24.01.1Status: Jan 29, 2024

12.1. Pose formats

12.1.3.1 Conversion from FANUC-WPR to quaternion

The conversion from the 𝑊𝑃𝑅 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done byfirst converting all angles to radians
𝑊𝑟 = 𝑊

𝜋

180
,

𝑃𝑟 = 𝑃
𝜋

180
,

𝑅𝑟 = 𝑅
𝜋

180
,

and then calculating the quaternion with
𝑥 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2)− sin (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2),
𝑦 = cos (𝑅𝑟/2) sin (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) cos (𝑃𝑟/2) sin (𝑊𝑟/2),
𝑧 = sin (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2)− cos (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2),
𝑤 = cos (𝑅𝑟/2) cos (𝑃𝑟/2) cos (𝑊𝑟/2) + sin (𝑅𝑟/2) sin (𝑃𝑟/2) sin (𝑊𝑟/2).

12.1.3.2 Conversion from quaternion to FANUC-WPR

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the𝑊𝑃𝑅 angles in degrees canbe done as follows.
𝑅 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))

180

𝜋

𝑃 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑊 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

12.1.4 Franka Emika Pose Format

Franka Emika robots use a transformation matrix 𝑇 to define a pose. A transformation matrix combinesa rotation matrix 𝑅 and a translation vector 𝑡 = (𝑥 𝑦 𝑧)𝑇 .

𝑇 =

⎛⎜⎜⎝
𝑟00 𝑟01 𝑟02 𝑥
𝑟10 𝑟11 𝑟12 𝑦
𝑟20 𝑟21 𝑟22 𝑧
0 0 0 1

⎞⎟⎟⎠
The pose given by Franka Emika’s “Measure Pose” App consists of a translation 𝑥, 𝑦, 𝑧 in millimetersand a rotation 𝑥, 𝑦, 𝑧 in degrees. The rotation convention is 𝑧-𝑦′-𝑥′′ (i.e. 𝑥-𝑦-𝑧) and is computed by
𝑟𝑧(𝑧)𝑟𝑦(𝑦)𝑟𝑥(𝑥).

12.1.4.1 Conversion from transformation matrix to quaternion

The conversion from a rotation matrix (with 𝑑𝑒𝑡(𝑅) = 1) to a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) can bedone as follows:
𝑞𝑥 = sign(𝑟21 − 𝑟12)

1

2

√︀max(0, 1 + 𝑟00 − 𝑟11 − 𝑟22)

𝑞𝑦 = sign(𝑟02 − 𝑟20)
1

2

√︀max(0, 1− 𝑟00 + 𝑟11 − 𝑟22)

𝑞𝑧 = sign(𝑟10 − 𝑟01)
1

2

√︀max(0, 1− 𝑟00 − 𝑟11 + 𝑟22)

𝑞𝑤 =
1

2

√︀max(0, 1 + 𝑟00 + 𝑟11 + 𝑟22)

Basler AGManual: rc_visard 325 Rev: 24.01.1Status: Jan 29, 2024

12.1. Pose formats

The sign operator returns -1 if the argument is negative. Otherwise, 1 is returned. It is used to recoverthe sign for the square root. The max function ensures that the argument of the square root function isnot negative, which can happen in practice due to round-off errors.
12.1.4.2 Conversion from Rotation-XYZ to quaternion

The conversion from the 𝑥, 𝑦, 𝑧 angles in degrees to a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) can be doneby first converting all angles to radians
𝑋𝑟 = 𝑥

𝜋

180
,

𝑌𝑟 = 𝑦
𝜋

180
,

𝑍𝑟 = 𝑧
𝜋

180
,

and then calculating the quaternion with
𝑞𝑥 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2)− sin (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2),
𝑞𝑦 = cos (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑞𝑧 = sin (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2)− cos (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑞𝑤 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2).

12.1.4.3 Conversion from quaternion and translation to transformation

The conversion from a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) and a translation vector 𝑡 = (𝑥 𝑦 𝑧)𝑇 toa transformation matrix 𝑇 can be done as follows:

𝑇 =

⎛⎜⎜⎝
1− 2𝑠(𝑞2𝑦 + 𝑞2𝑧) 2𝑠(𝑞𝑥𝑞𝑦 − 𝑞𝑧𝑞𝑤) 2𝑠(𝑞𝑥𝑞𝑧 + 𝑞𝑦𝑞𝑤) 𝑥
2𝑠(𝑞𝑥𝑞𝑦 + 𝑞𝑧𝑞𝑤) 1− 2𝑠(𝑞2𝑥 + 𝑞2𝑧) 2𝑠(𝑞𝑦𝑞𝑧 − 𝑞𝑥𝑞𝑤) 𝑦
2𝑠(𝑞𝑥𝑞𝑧 − 𝑞𝑦𝑞𝑤) 2𝑠(𝑞𝑦𝑞𝑧 + 𝑞𝑥𝑞𝑤) 1− 2𝑠(𝑞2𝑥 + 𝑞2𝑦) 𝑧

0 0 0 1

⎞⎟⎟⎠
where 𝑠 = ||𝑞||−2 = 1

𝑞2𝑥+𝑞2𝑦+𝑞2𝑧+𝑞2𝑤
and 𝑠 = 1 if 𝑞 is a unit quaternion.

12.1.4.4 Conversion from quaternion to Rotation-XYZ

The conversion from a quaternion 𝑞 = (𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤) with ||𝑞|| = 1 to the 𝑥, 𝑦, 𝑧 angles in degreescan be done as follows.
𝑥 = atan2(2(𝑞𝑤𝑞𝑧 + 𝑞𝑥𝑞𝑦), 1− 2(𝑞2𝑦 + 𝑞2𝑧))

180

𝜋

𝑦 = asin(2(𝑞𝑤𝑞𝑦 − 𝑞𝑧𝑞𝑥))
180

𝜋

𝑧 = atan2(2(𝑞𝑤𝑞𝑥 + 𝑞𝑦𝑞𝑧), 1− 2(𝑞2𝑥 + 𝑞2𝑦))
180

𝜋

12.1.4.5 Pose representation in RaceCom messages and state machines

In RaceCom messages and in state machines a pose is usually defined as one-dimensional array of 16float values, representing the transformation matrix in column-major order. The indices of the matrixentries below correspond to the array indices

𝑇 =

⎛⎜⎜⎝
𝑎0 𝑎4 𝑎8 𝑎12
𝑎1 𝑎5 𝑎9 𝑎13
𝑎2 𝑎6 𝑎10 𝑎14
𝑎3 𝑎7 𝑎11 𝑎15

⎞⎟⎟⎠
Basler AGManual: rc_visard 326 Rev: 24.01.1Status: Jan 29, 2024

12.1. Pose formats

12.1.5 Fruitcore HORST pose format

Fruitcore HORST robots use a position in meters and a quaternion with 𝑞0 = 𝑤, 𝑞1 = 𝑥, 𝑞2 = 𝑦 and 𝑞3 = 𝑧for describing a pose, like rc_visard devices. There is no conversion needed.

12.1.6 Kawasaki XYZ-OAT format

The pose format that is used by Kawasaki robots consists of a position 𝑋𝑌 𝑍 in millimeters and anorientation𝑂𝐴𝑇 that is given by three angles in degrees, with𝑂 rotating around 𝑧 axis,𝐴 rotating aroundthe rotated 𝑦 axis and 𝑇 rotating around the rotated 𝑧 axis. The rotation convention is 𝑧-𝑦′-𝑧′′ (i.e. 𝑧-𝑦-𝑧)and computed by 𝑟𝑧(𝑂)𝑟𝑦(𝐴)𝑟𝑧(𝑇).
12.1.6.1 Conversion from Kawasaki-OAT to quaternion

The conversion from the 𝑂𝐴𝑇 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done byfirst converting all angles to radians
𝑂𝑟 = 𝑂

𝜋

180
,

𝐴𝑟 = 𝐴
𝜋

180
,

𝑇𝑟 = 𝑇
𝜋

180
,

and then calculating the quaternion with
𝑥 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2)− sin (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2),
𝑦 = cos (𝑂𝑟/2) sin (𝐴𝑟/2) cos (𝑇𝑟/2) + sin (𝑂𝑟/2) sin (𝐴𝑟/2) sin (𝑇𝑟/2),
𝑧 = sin (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2) + cos (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2),
𝑤 = cos (𝑂𝑟/2) cos (𝐴𝑟/2) cos (𝑇𝑟/2)− sin (𝑂𝑟/2) cos (𝐴𝑟/2) sin (𝑇𝑟/2).

12.1.6.2 Conversion from quaternion to Kawasaki-OAT

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝑂𝐴𝑇 angles in degrees canbe done as follows.
If 𝑥 = 0 and 𝑦 = 0 the conversion is

𝑂 = atan2(2(𝑧 − 𝑤), 2(𝑧 + 𝑤))
180

𝜋

𝐴 = acos(𝑤2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑧 + 𝑤), 2(𝑤 − 𝑧))
180

𝜋

If 𝑧 = 0 and 𝑤 = 0 the conversion is
𝑂 = atan2(2(𝑦 − 𝑥), 2(𝑥+ 𝑦))

180

𝜋

𝐴 = acos(−1.0)
180

𝜋

𝑇 = atan2(2(𝑦 + 𝑥), 2(𝑦 − 𝑥))
180

𝜋

Basler AGManual: rc_visard 327 Rev: 24.01.1Status: Jan 29, 2024

12.1. Pose formats

In all other cases the conversion is
𝑂 = atan2(2(𝑦𝑧 − 𝑤𝑥), 2(𝑥𝑧 + 𝑤𝑦))

180

𝜋

𝐴 = acos(𝑤2 − 𝑥2 − 𝑦2 + 𝑧2)
180

𝜋

𝑇 = atan2(2(𝑦𝑧 + 𝑤𝑥), 2(𝑤𝑦 − 𝑥𝑧))
180

𝜋

12.1.7 KUKA XYZ-ABC format

KUKA robots use the so called XYZ-ABC format. 𝑋𝑌 𝑍 is the position in millimeters. 𝐴𝐵𝐶 are anglesin degrees, with 𝐴 rotating around 𝑧 axis, 𝐵 rotating around 𝑦 axis and 𝐶 rotating around 𝑥 axis. Therotation convention is 𝑧-𝑦′-𝑥′′ (i.e. 𝑥-𝑦-𝑧) and computed by 𝑟𝑧(𝐴)𝑟𝑦(𝐵)𝑟𝑥(𝐶).
12.1.7.1 Conversion from KUKA-ABC to quaternion

The conversion from the 𝐴𝐵𝐶 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done byfirst converting all angles to radians
𝐴𝑟 = 𝐴

𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

and then calculating the quaternion with
𝑥 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2)− sin (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2),
𝑦 = cos (𝐴𝑟/2) sin (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) cos (𝐵𝑟/2) sin (𝐶𝑟/2),
𝑧 = sin (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2)− cos (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2),
𝑤 = cos (𝐴𝑟/2) cos (𝐵𝑟/2) cos (𝐶𝑟/2) + sin (𝐴𝑟/2) sin (𝐵𝑟/2) sin (𝐶𝑟/2).

12.1.7.2 Conversion from quaternion to KUKA-ABC

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝐴𝐵𝐶 angles in degrees canbe done as follows.
𝐴 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))

180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))
180

𝜋

12.1.8 Mitsubishi XYZ-ABC format

The pose format that is used by Mitsubishi robots is the same as that for KUKA robots (see KUKA XYZ-
ABC format, Section 12.1.7), except that 𝐴 is a rotation around 𝑥 axis and 𝐶 is a rotation around 𝑧 axis.Thus, the rotation is computed by 𝑟𝑧(𝐶)𝑟𝑦(𝐵)𝑟𝑥(𝐴).

Basler AGManual: rc_visard 328 Rev: 24.01.1Status: Jan 29, 2024

12.1. Pose formats

12.1.8.1 Conversion from Mitsubishi-ABC to quaternion

The conversion from the 𝐴𝐵𝐶 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done byfirst converting all angles to radians
𝐴𝑟 = 𝐴

𝜋

180
,

𝐵𝑟 = 𝐵
𝜋

180
,

𝐶𝑟 = 𝐶
𝜋

180
,

and then calculating the quaternion with
𝑥 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2)− sin (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2),
𝑦 = cos (𝐶𝑟/2) sin (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) cos (𝐵𝑟/2) sin (𝐴𝑟/2),
𝑧 = sin (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2)− cos (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2),
𝑤 = cos (𝐶𝑟/2) cos (𝐵𝑟/2) cos (𝐴𝑟/2) + sin (𝐶𝑟/2) sin (𝐵𝑟/2) sin (𝐴𝑟/2).

12.1.8.2 Conversion from quaternion to Mitsubishi-ABC

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to the 𝐴𝐵𝐶 angles in degrees canbe done as follows.
𝐴 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))

180

𝜋

𝐵 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝐶 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

12.1.9 Universal Robots pose format

The pose format that is used by Universal Robots consists of a position 𝑋𝑌 𝑍 in millimeters and anorientation in angle-axis format 𝑉 = (𝑅𝑋 𝑅𝑌 𝑅𝑍)𝑇 . The rotation angle 𝜃 in radians is the lengthof the rotation axis 𝑈 .
𝑉 =

⎛⎝ 𝑅𝑋
𝑅𝑌
𝑅𝑍

⎞⎠ =

⎛⎝ 𝜃𝑢𝑥

𝜃𝑢𝑦

𝜃𝑢𝑧

⎞⎠
𝑉 is called a rotation vector.
12.1.9.1 Conversion from angle-axis format to quaternion

The conversion from a rotation vector 𝑉 to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be done as follows.
We first recover the angle 𝜃 in radians from the rotation vector 𝑉 by

𝜃 =
√︀
𝑅𝑋2 +𝑅𝑌 2 +𝑅𝑍2.

Basler AGManual: rc_visard 329 Rev: 24.01.1Status: Jan 29, 2024

12.1. Pose formats

If 𝜃 = 0, then the quaternion is 𝑞 = (0 0 0 1), otherwise it is
𝑥 = 𝑅𝑋

sin(𝜃/2)

𝜃
,

𝑦 = 𝑅𝑌
sin(𝜃/2)

𝜃
,

𝑧 = 𝑅𝑍
sin(𝜃/2)

𝜃
,

𝑤 = cos(𝜃/2).
12.1.9.2 Conversion from quaternion to angle-axis format

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) with ||𝑞|| = 1 to a rotation vector in angle-axisform can be done as follows.
We first recover the angle 𝜃 in radians from the quaternion by

𝜃 = 2 · acos(𝑤).
If 𝜃 = 0, then the rotation vector is 𝑉 = (0 0 0)𝑇 , otherwise it is

𝑅𝑋 = 𝜃
𝑥√

1− 𝑤2
,

𝑅𝑌 = 𝜃
𝑦√

1− 𝑤2
,

𝑅𝑍 = 𝜃
𝑧√

1− 𝑤2
.

12.1.10 Yaskawa Pose Format

The pose format that is used by Yaskawa robots consists of a position 𝑋𝑌 𝑍 in millimeters and anorientation that is given by three angles in degrees, with 𝑅𝑥 rotating around 𝑥-axis, 𝑅𝑦 rotating around
𝑦-axis and 𝑅𝑧 rotating around 𝑧-axis. The rotation order is 𝑥-𝑦-𝑧 and computed by 𝑟𝑧(𝑅𝑧)𝑟𝑦(𝑅𝑦)𝑟𝑥(𝑅𝑥).
12.1.10.1 Conversion from Yaskawa Rx, Ry, Rz to quaternion

The conversion from the𝑅𝑥,𝑅𝑦,𝑅𝑧 angles in degrees to a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤) can be doneby first converting all angles to radians
𝑋𝑟 = 𝑅𝑥

𝜋

180
,

𝑌𝑟 = 𝑅𝑦
𝜋

180
,

𝑍𝑟 = 𝑅𝑧
𝜋

180
,

and then calculating the quaternion with
𝑥 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2)− sin (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2),
𝑦 = cos (𝑍𝑟/2) sin (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) cos (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑧 = sin (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2)− cos (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2),
𝑤 = cos (𝑍𝑟/2) cos (𝑌𝑟/2) cos (𝑋𝑟/2) + sin (𝑍𝑟/2) sin (𝑌𝑟/2) sin (𝑋𝑟/2).

Basler AGManual: rc_visard 330 Rev: 24.01.1Status: Jan 29, 2024

12.1. Pose formats

12.1.10.2 Conversion from quaternion to Yaskawa Rx, Ry, Rz

The conversion from a quaternion 𝑞 = (𝑥 𝑦 𝑧 𝑤)with ||𝑞|| = 1 to the𝑅𝑥,𝑅𝑦,𝑅𝑧 angles in degreescan be done as follows.
𝑅𝑥 = atan2(2(𝑤𝑥+ 𝑦𝑧), 1− 2(𝑥2 + 𝑦2))

180

𝜋

𝑅𝑦 = asin(2(𝑤𝑦 − 𝑧𝑥))
180

𝜋

𝑅𝑧 = atan2(2(𝑤𝑧 + 𝑥𝑦), 1− 2(𝑦2 + 𝑧2))
180

𝜋

Basler AGManual: rc_visard 331 Rev: 24.01.1Status: Jan 29, 2024

HTTP Routing Table

HTTP Routing Table

/cad
GET /cad/gripper_elements, 230
GET /cad/gripper_elements/{id}, 231
PUT /cad/gripper_elements/{id}, 231
DELETE /cad/gripper_elements/{id}, 232
/datastreams
GET /datastreams, 264
GET /datastreams/{stream}, 265
PUT /datastreams/{stream}, 266
DELETE /datastreams/{stream}, 266
/logs
GET /logs, 267
GET /logs/{log}, 268
/nodes
GET /nodes, 250
GET /nodes/{node}, 251
GET /nodes/{node}/services, 251
GET /nodes/{node}/services/{service}, 252
GET /nodes/{node}/status, 253
PUT /nodes/{node}/services/{service}, 253
/pipelines
GET /pipelines/{pipeline}/nodes, 254
GET /pipelines/{pipeline}/nodes/{node}, 255
GET /pipelines/{pipeline}/nodes/{node}/parameters,256
GET /pipelines/{pipeline}/nodes/{node}/parameters/{param},258
GET /pipelines/{pipeline}/nodes/{node}/services,260
GET /pipelines/{pipeline}/nodes/{node}/services/{service},261
GET /pipelines/{pipeline}/nodes/{node}/status,263
PUT /pipelines/{pipeline}/nodes/{node}/parameters,257
PUT /pipelines/{pipeline}/nodes/{node}/parameters/{param},259
PUT /pipelines/{pipeline}/nodes/{node}/services/{service},262
/system
GET /system, 269
GET /system/backup, 270

GET /system/dns, 271
GET /system/license, 273
GET /system/network, 274
GET /system/network/settings, 274
GET /system/rollback, 276
GET /system/time, 276
GET /system/ui_lock, 277
GET /system/update, 279
POST /system/backup, 271
POST /system/license, 273
POST /system/ui_lock, 278
POST /system/update, 279
PUT /system/dns, 272
PUT /system/network/settings, 275
PUT /system/reboot, 275
PUT /system/rollback, 276
PUT /system/time, 277
DELETE /system/ui_lock, 278
/templates
GET /templates/rc_boxpick, 130
GET /templates/rc_boxpick/{id}, 131
GET /templates/rc_silhouettematch, 165
GET /templates/rc_silhouettematch/{id}, 166
PUT /templates/rc_boxpick/{id}, 131
PUT /templates/rc_silhouettematch/{id}, 166
DELETE /templates/rc_boxpick/{id}, 132
DELETE /templates/rc_silhouettematch/{id},167

Basler AGManual: rc_visard 332 Rev: 24.01.1Status: Jan 29, 2024

Index

Index

Symbols
3D coordinates, 44

disparity image, 43
3D modeling, 44, 59
A
acceleration, 59, 60

dynamics, 31
acquisition mode

disparity image, 47
AcquisitionAlternateFilter

GenICam, 241
AcquisitionFrameRate

GenICam, 237
AcquisitionMultiPartMode

GenICam, 241
active partition, 313
AdaptiveOut1

auto exposure mode, 38
angular

velocity, 59, 60
AprilTag, 92

pose estimation, 94
re-identification, 96
return codes, 103
services, 98

auto
exposure, 38

auto exposure, 37–39
auto exposure mode, 38

AdaptiveOut1, 38
Normal, 38
Out1High, 38

B
backup

settings, 311
BalanceRatio

GenICam, 238
BalanceRatioSelector

GenICam, 238
BalanceWhiteAuto

GenICam, 238
base-plane

SilhouetteMatch, 134
base-plane calibration

SilhouetteMatch, 134
Baseline

GenICam, 242
baseline, 33
Baumer

IpConfigTool, 29
bin picking, 103
BoxPick, 103

filling level, 78
grasp, 106
grasp sorting, 106
item models, 104
load carrier, 77, 207
parameters, 108
RECTANGLE, 104
region of interest, 215
return codes, 130
services, 115
status, 114
template api, 130
template deletion, 130
template download, 130
template upload, 130
texture, 105
TEXTURED_BOX, 105
views, 105

C
cables, 20, 315
CAD model, 18
calibration

camera, 197
camera to IMU, 59
hand-eye calibration, 172
rectification, 33

calibration grid, 198
camera

calibration, 197
frame rate, 36
gamma, 37
parameters, 34, 36
pose stream, 59
Web GUI, 34

camera calibration
monocalibration, 202
parameters, 203
services, 203
stereo calibration, 200

camera model, 33
camera to IMU

Basler AGManual: rc_visard 333 Rev: 24.01.1Status: Jan 29, 2024

Index

calibration, 59
transformation, 59

Chunk data
GenICam, 240

collision check, 189, 222
CollisionCheck, 189

return codes, 197
compartment

load carrier, 210
ComponentEnable

GenICam, 237
ComponentIDValue

GenICam, 237
components

rc_visard, 15
ComponentSelector

GenICam, 236
Confidence

GenICam image stream, 244
confidence, 44

minimum, 51
connectivity kit, 315
conversions

GenICam image stream, 245
cooling, 19
coordinate frames

dynamics, 59
mounting, 23
state estimation, 57

corners
visual odometry, 65, 67

correspondences
visual odometry, 65

D
data

IMU, 60
inertial measurement unit, 60

data model
REST-API, 279

data stream
dynamics, 58, 59
imu, 60
pose, 59
pose_rt, 59
REST-API, 264

data-type
REST-API, 279

definition
load carrier, 208

depth error
maximum, 51

depth image, 43, 43
Web GUI, 45

DepthAcquisitionMode
GenICam, 242

DepthAcquisitionTrigger
GenICam, 242

DepthDoubleShot
GenICam, 243

DepthFill
GenICam, 243

DepthMaxDepth
GenICam, 243

DepthMaxDepthErr
GenICam, 244

DepthMinConf
GenICam, 243

DepthMinDepth
GenICam, 243

DepthQuality
GenICam, 243

DepthSeg
GenICam, 243

DepthSmooth
GenICam, 243

DepthStaticScene
GenICam, 243

detection
load carrier, 77
tag, 91

DHCP, 11
DHCP, 28
dimensions

load carrier, 208
rc_visard, 17

disable parameter lock
GenICam, 241

discovery GUI, 26
Disparity

GenICam image stream, 244
disparity, 30, 33, 43
disparity error, 44
disparity image, 30, 43

3D coordinates, 43
acquisition mode, 47
double_shot, 49
exposure adaptation timeout, 48
parameters, 45
quality, 48
smooth, 50
static_scene, 49
Web GUI, 45

disparity range
visual odometry, 67

DNS, 11
DOF, 11
double_shot

disparity image, 49
GenICam, 243

download
images, 34
log files, 314
point cloud, 45
settings, 311

dynamic state, 31

Basler AGManual: rc_visard 334 Rev: 24.01.1Status: Jan 29, 2024

Index

dynamics
acceleration, 31
coordinate frames, 59
data stream, 58, 59
jump flag, 59
pose, 31
REST-API, 264
services, 60
velocity, 31
Web GUI, 65

dynamics stream, 58, 59
E
egomotion, 31, 65
eki, 298
Error

GenICam image stream, 244
error, 44

hand-eye calibration, 178
pose, 70

Ethernet
pin assignments, 20

exposure
auto, 37, 38
HDR, 37
manual, 37, 38

exposure adaptation timeout
disparity image, 48

exposure region, 39
exposure time, 34, 40

maximum, 39
ExposureAuto

GenICam, 237
ExposureRegionHeight

GenICam, 242
ExposureRegionOffsetX

GenICam, 241
ExposureRegionOffsetY

GenICam, 241
ExposureRegionWidth

GenICam, 242
ExposureTime

GenICam, 238
ExposureTimeAutoMax

GenICam, 241
external reference frame

hand-eye calibration, 168
F
features

visual odometry, 68
fill-in, 51

GenICam, 243
filling level

BoxPick, 78
ItemPick, 78
LoadCarrier, 78
SilhouetteMatch, 78

firmware
mender, 312
rollback, 313
update, 312
version, 312

focal length, 33
focal length factor

GenICam, 242
FocalLengthFactor

GenICam, 242
fps, see frame rate
frame rate, 16

camera, 36
GenICam, 237
pose, 58, 59
visual odometry, 65

G
Gain

GenICam, 238
gain factor, 34, 39, 40
gamma

camera, 37
GenICam, 11
GenICam

AcquisitionAlternateFilter, 241
AcquisitionFrameRate, 237
AcquisitionMultiPartMode, 241
BalanceRatio, 238
BalanceRatioSelector, 238
BalanceWhiteAuto, 238
Baseline, 242
Chunk data, 240
ComponentEnable, 237
ComponentIDValue, 237
ComponentSelector, 236
DepthAcquisitionMode, 242
DepthAcquisitionTrigger, 242
DepthDoubleShot, 243
DepthFill, 243
DepthMaxDepth, 243
DepthMaxDepthErr, 244
DepthMinConf, 243
DepthMinDepth, 243
DepthQuality, 243
DepthSeg, 243
DepthSmooth, 243
DepthStaticScene, 243
disable parameter lock, 241
double_shot, 243
ExposureAuto, 237
ExposureRegionHeight, 242
ExposureRegionOffsetX, 241
ExposureRegionOffsetY, 241
ExposureRegionWidth, 242
ExposureTime, 238
ExposureTimeAutoMax, 241
fill-in, 243

Basler AGManual: rc_visard 335 Rev: 24.01.1Status: Jan 29, 2024

Index

focal length factor, 242
FocalLengthFactor, 242
frame rate, 237
Gain, 238
Height, 237
HeightMax, 237
LineSelector, 239
LineSource, 239
LineStatus, 239
LineStatusAll, 239
maximum depth error, 244
maximum distance, 243
minimum confidence, 243
minimum distance, 243
PixelFormat, 237, 244
PtpEnable, 239
quality, 243
RcExposureAutoAverageMax, 242
RcExposureAutoAverageMin, 242
Scan3dBaseline, 239
Scan3dCoordinateOffset, 240
Scan3dCoordinateScale, 240
Scan3dDistanceUnit, 239
Scan3dFocalLength, 239
Scan3dInvalidDataFlag, 240
Scan3dInvalidDataValue, 240
Scan3dOutputMode, 239
Scan3dPrinciplePointU, 240
Scan3dPrinciplePointV, 240
segmentation, 243
smooth, 243
static_scene, 243
system ready, 241
timestamp, 245
Width, 237
WidthMax, 237

GenICam image stream
Confidence, 244
conversions, 245
Disparity, 244
Error, 244
Intensity, 244
IntensityCombined, 244

GigE, 11
GigE Vision, 11
GigE Vision, see GenICam

IP address, 29
GPIO

pin assignments, 21
grasp computation, 103
gripper CAD element api, 230
gripper CAD element deletion, 230
gripper CAD element download, 230
gripper CAD element upload, 230
GripperDB, 222

return codes, 230
gRPC, 306

H
hand-eye calibration

calibration, 172
error, 178
external reference frame, 168
mounting, 169
parameters, 178
robot frame, 168
slot, 175

Height
GenICam, 237

HeightMax
GenICam, 237

host name, 28
housing temperature

LED, 19
humidity, 19
I
image

timestamp, 45, 245
image features

visual odometry, 65
image noise, 39
images

download, 34
IMU, 11
IMU, 31

data, 60
inertial measurement unit, 65

imu
data stream, 60

inactive partition, 313
inertial measurement unit

data, 60
IMU, 65

inner volume
load carrier, 208

INS, 11
INS, 31
installation, 25
Intensity

GenICam image stream, 244
IntensityCombined

GenICam image stream, 244
IP, 11
IP address, 11
IP address, 27

GigE Vision, 29
IP54, 19
IpConfigTool

Baumer, 29
ItemPick, 103

filling level, 78
grasp, 106
grasp sorting, 106
load carrier, 77, 207
parameters, 108

Basler AGManual: rc_visard 336 Rev: 24.01.1Status: Jan 29, 2024

Index

region of interest, 215
return codes, 130
services, 115
status, 114

J
jump flag

dynamics, 59
SLAM, 59

K
keyframes, 65

visual odometry, 65, 67
L
LED, 25

colors, 317
housing temperature, 19

linear
velocity, 59

LineSelector
GenICam, 239

LineSource
GenICam, 239

LineStatus
GenICam, 239

LineStatusAll
GenICam, 239

Link-Local, 11
Link-Local, 28
load carrier

BoxPick, 77, 207
compartment, 210
definition, 208
detection, 77
dimensions, 208
inner volume, 208
ItemPick, 77, 207
orientation prior, 208
pose, 208
rim, 208
SilhouetteMatch, 77, 207

load carrier detection, 77
load carrier model, 207
LoadCarrier, 77

filling level, 78
parameters, 80
return codes, 90
services, 82

LoadCarrierDB, 207
return codes, 215
services, 212

log files
download, 314

logs
REST-API, 267

loop closure, 70

M
MAC address, 11
MAC address, 28
manual exposure, 37, 38, 40
maximum

depth error, 51
exposure time, 39

maximum depth error, 51
GenICam, 244

maximum distance, 50
GenICam, 243

mDNS, 11
mender

firmware, 312
minimum

confidence, 51
minimum confidence, 51

GenICam, 243
minimum distance, 49

GenICam, 243
monocalibration

camera calibration, 202
motion blur, 39
mounting, 22

hand-eye calibration, 169
N
network cable, 315
network configuration, 27
node

REST-API, 248
Normal

auto exposure mode, 38
NTP, 11
NTP

synchronization, 309
O
object detection, 133
OPC UA, 309
operating conditions, 19
orientation prior

load carrier, 208
Out1High

auto exposure mode, 38
P
parameter

REST-API, 249
parameters

camera, 34, 36
camera calibration, 203
disparity image, 45
hand-eye calibration, 178
services, 42
visual odometry, 65

pin assignments
Ethernet, 20

Basler AGManual: rc_visard 337 Rev: 24.01.1Status: Jan 29, 2024

Index

GPIO, 21
power, 21

PixelFormat
GenICam, 237, 244

point cloud, 44
download, 45

pose
data stream, 59
dynamics, 31
error, 70
frame rate, 58, 59
load carrier, 208
timestamp, 58

pose estimation, see state estimation
AprilTag, 94
QR code, 94

pose stream, 59
camera, 59

pose_rt
data stream, 59

power
pin assignments, 21

power cable, 315, 316
power supply, 19, 316
protection class, 19
PTP, 11
PTP

synchronization, 239, 309
PtpEnable

GenICam, 239
Q
QR Code

return codes, 103
QR code, 91

pose estimation, 94
re-identification, 96
services, 98

quality
disparity image, 48
GenICam, 243

quaternion
rotation, 59

R
rc_dynamics, 295
rc_visard

components, 15
RcExposureAutoAverageMax

GenICam, 242
RcExposureAutoAverageMin

GenICam, 242
re-identification

AprilTag, 96
QR code, 96

real-time pose, 58, 59
reboot, 313
rectification, 33

reset, 26
resolution, 16
REST-API, 246

data model, 279
data stream, 264
data-type, 279
dynamics, 264
entry point, 246
logs, 267
node, 248
parameter, 249
services, 249
status value, 249
system, 267
version, 246

restore
settings, 311

return codes
AprilTag, 103
BoxPick, 130
CollisionCheck, 197
GripperDB, 230
ItemPick, 130
LoadCarrier, 90
LoadCarrierDB, 215
QR Code, 103
RoiDB, 222
SilhouetteMatch, 165

rim
load carrier, 208

robot frame
hand-eye calibration, 168

ROI, 215
RoiDB, 215

return codes, 222
services, 217

rollback
firmware, 313

rotation
quaternion, 59

S
Scan3dBaseline

GenICam, 239
Scan3dCoordinateOffset

GenICam, 240
Scan3dCoordinateScale

GenICam, 240
Scan3dDistanceUnit

GenICam, 239
Scan3dFocalLength

GenICam, 239
Scan3dInvalidDataFlag

GenICam, 240
Scan3dInvalidDataValue

GenICam, 240
Scan3dOutputMode

GenICam, 239

Basler AGManual: rc_visard 338 Rev: 24.01.1Status: Jan 29, 2024

Index

Scan3dPrinciplePointU
GenICam, 240

Scan3dPrinciplePointV
GenICam, 240

SDK, 11
segmentation, 51

GenICam, 243
self-calibration, 197
Semi-Global Matching, see SGM
sensor fusion, 65
serial number, 26, 28
services

AprilTag, 98
camera calibration, 203
dynamics, 60
parameters, 42
QR code, 98
REST-API, 249
tag detection, 98
visual odometry, 68

set
time, 310

settings
backup, 311
download, 311
restore, 311
upload, 311

SGM, 11
SGM, 30, 43
silhouette, 133
SilhouetteMatch, 133

base-plane, 134
base-plane calibration, 134
collision check, 141
detection of objects, 138
filling level, 78
grasp points, 135
load carrier, 77, 207
object template, 135
parameters, 142
preferred orientation, 137
region of interest, 135, 215
return codes, 165
services, 146
sorting, 138
status, 146
template api, 165
template deletion, 165
template download, 165
template upload, 165

Simultaneous Localization and Mapping, seeSLAM
SLAM, 12
SLAM, 70

jump flag, 59
Web GUI, 70

slot
hand-eye calibration, 175

smooth
disparity image, 50
GenICam, 243

spare parts, 316
specifications

rc_visard, 16
state estimate, 58
state estimation

coordinate frames, 57
static_scene

disparity image, 49
GenICam, 243

status value
REST-API, 249

stereo calibration
camera calibration, 200

stereo camera, 33
stereo matching, 30
Swagger UI, 291
synchronization

NTP, 309
PTP, 239, 309
time, 239, 309

system
REST-API, 267

system ready
GenICam, 241

T
tag detection, 91

families, 92
pose estimation, 94
re-identification, 96
services, 98

TCP, 12
temperature range, 19
texture, 43
time

set, 310
synchronization, 239, 309

timestamp
GenICam, 245
image, 45, 245
pose, 58

transformation
camera to IMU, 59

translation, 59
tripod, 22
U
UDP, 12
update

firmware, 312
upload

settings, 311
URI, 12
URL, 12

Basler AGManual: rc_visard 339 Rev: 24.01.1Status: Jan 29, 2024

Index

V
velocity

angular, 59, 60
dynamics, 31
linear, 59

version
firmware, 312
REST-API, 246

visual odometry, 31, 65
corners, 65, 67
correspondences, 65
disparity range, 67
features, 68
frame rate, 65
image features, 65
keyframes, 65, 67
parameters, 65
services, 68
Web GUI, 65

VO, see visual odometry
W
Web GUI, 233

backup, 311
camera, 34
depth image, 45
disparity image, 45
dynamics, 65
logs, 314
SLAM, 70
update, 312
visual odometry, 65

white balance, 40, 41
Width

GenICam, 237
WidthMax

GenICam, 237
X
XYZ+quaternion, 12
XYZABC, 12

Basler AGManual: rc_visard 340 Rev: 24.01.1Status: Jan 29, 2024

rc_visard 3D Stereo Sensor
ASSEMBLY AND OPERATING MANUAL

Basler AG
An der Strusbek 60-62
22926 Ahrensburg info@baslerweb.com
Germany https://www.baslerweb.com
Software: https://www.baslerweb.com/3d-software
Hardware: https://www.baslerweb.com/stereo

For customer support, contact

+49 4102 463 515 support.europe@baslerweb.com
+1 610 280 0171 support.usa@baslerweb.com
+65 6367 1355 support.asia@baslerweb.com

	Introduction
	Overview
	Warranty
	Applicable standards
	Interfaces
	Approvals
	Standards

	Information on disposal
	Glossary

	Safety
	General warnings
	Intended use

	Hardware specification
	Scope of delivery
	Technical specification
	Environmental and operating conditions
	Power-supply specifications
	Wiring
	Mechanical interface
	Coordinate frames

	Installation
	Software license
	Power up
	Discovery of rc_visard devices
	Resetting configuration

	Network configuration
	Host name
	Automatic configuration (factory default)
	Manual configuration

	Measurement principles
	Stereo vision
	Sensor dynamics

	Software modules
	3D camera modules
	Camera
	Stereo matching

	Navigation modules
	Sensor dynamics
	Visual odometry
	Stereo INS
	SLAM

	Detection modules
	LoadCarrier
	TagDetect
	ItemPick and BoxPick
	SilhouetteMatch

	Configuration modules
	Hand-eye calibration
	CollisionCheck
	Camera calibration
	IO and Projector Control

	Database modules
	LoadCarrierDB
	RoiDB
	GripperDB

	Interfaces
	Web GUI
	Accessing the Web GUI
	Exploring the Web GUI
	Web GUI access control
	Downloading camera images
	Downloading depth images and point clouds

	GigE Vision 2.0/GenICam image interface
	GigE Vision ports
	Important GenICam parameters
	Important standard GenICam features
	Custom GenICam features of the rc_visard
	Chunk data
	Provided image streams
	Image stream conversions

	REST-API interface
	General API structure
	Migration from API version 1
	Available resources and requests
	Data type definitions
	Swagger UI

	The rc_dynamics interface
	Starting/stopping dynamic-state estimation
	Configuring data streams
	Data-stream protocol
	rc_dynamics_api

	KUKA Ethernet KRL Interface
	Ethernet connection configuration
	Generic XML structure
	Services
	Parameters
	Migration to firmware version 22.01
	Troubleshooting

	gRPC image stream interface
	gRPC service definition
	Image stream conversions

	OPC UA interface
	Time synchronization
	NTP
	PTP
	Setting time manually

	Maintenance
	Lens cleaning
	Camera calibration
	Creating and restoring backups of settings
	Updating the firmware
	Restoring the previous firmware version
	Rebooting the rc_visard
	Updating the software license
	Downloading log files

	Accessories
	Connectivity kit
	Wiring
	Ethernet connections
	Power connections
	Power supplies

	Spare parts

	Troubleshooting
	LED colors
	Hardware issues
	Connectivity issues
	Camera-image issues
	Depth/Disparity, error, and confidence image issues
	Dynamics issues
	GigE Vision/GenICam issues

	Contact
	Support
	Downloads
	Address

	Appendix
	Pose formats
	Rotation matrix and translation vector
	ABB pose format
	FANUC XYZ-WPR format
	Franka Emika Pose Format
	Fruitcore HORST pose format
	Kawasaki XYZ-OAT format
	KUKA XYZ-ABC format
	Mitsubishi XYZ-ABC format
	Universal Robots pose format
	Yaskawa Pose Format

	HTTP Routing Table
	Index

